Spaces:
Running
Running
fix api key
Browse files
app.py
CHANGED
|
@@ -5,22 +5,17 @@ import os
|
|
| 5 |
import re
|
| 6 |
import string
|
| 7 |
import time
|
|
|
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
import openai
|
| 11 |
import google.generativeai as genai
|
| 12 |
|
| 13 |
|
| 14 |
-
openai_key = os.environ.get('OPEN_AI_KEY')
|
| 15 |
-
gpt_client = openai.OpenAI(api_key=openai_key)
|
| 16 |
-
|
| 17 |
-
gemini_key = os.environ.get('GEMINI_API_KEY')
|
| 18 |
-
genai.configure(api_key=gemini_key)
|
| 19 |
-
|
| 20 |
-
|
| 21 |
def query_gpt_model(
|
| 22 |
prompt: str,
|
| 23 |
llm: str = 'gpt-3.5-turbo-1106',
|
|
|
|
| 24 |
temperature: float = 0.0,
|
| 25 |
max_decode_steps: int = 512,
|
| 26 |
seconds_to_reset_tokens: float = 30.0,
|
|
@@ -28,7 +23,7 @@ def query_gpt_model(
|
|
| 28 |
|
| 29 |
while True:
|
| 30 |
try:
|
| 31 |
-
raw_response =
|
| 32 |
model=llm,
|
| 33 |
max_tokens=max_decode_steps,
|
| 34 |
temperature=temperature,
|
|
@@ -56,8 +51,10 @@ safety_settings=[
|
|
| 56 |
def query_gemini_model(
|
| 57 |
prompt: str,
|
| 58 |
llm: str = 'gemini-pro',
|
|
|
|
| 59 |
retries: int = 10,
|
| 60 |
) -> str:
|
|
|
|
| 61 |
model = genai.GenerativeModel(llm)
|
| 62 |
while True and retries > 0:
|
| 63 |
try:
|
|
@@ -74,12 +71,13 @@ def query_gemini_model(
|
|
| 74 |
def query_model(
|
| 75 |
prompt: str,
|
| 76 |
model_name: str = 'gemini-pro',
|
|
|
|
| 77 |
) -> str:
|
| 78 |
model_type = model_name.split('-')[0]
|
| 79 |
if model_type == "gpt":
|
| 80 |
-
return query_gpt_model(prompt, llm=model_name)
|
| 81 |
elif model_type == "gemini":
|
| 82 |
-
return query_gemini_model(prompt, llm=model_name)
|
| 83 |
else:
|
| 84 |
raise ValueError('Unexpected model_name: ', model_name)
|
| 85 |
|
|
@@ -201,6 +199,7 @@ def parse_pause_point(text):
|
|
| 201 |
|
| 202 |
def quality_pagination(example,
|
| 203 |
model_name='gemini-pro',
|
|
|
|
| 204 |
word_limit=600,
|
| 205 |
start_threshold=280,
|
| 206 |
max_retires=10,
|
|
@@ -232,7 +231,7 @@ def quality_pagination(example,
|
|
| 232 |
pause_point = len(paragraphs)
|
| 233 |
else:
|
| 234 |
prompt = prompt_pagination_template.format(preceding, '\n'.join(passage), end_tag)
|
| 235 |
-
response = query_model(prompt=prompt, model_name=model_name).strip()
|
| 236 |
pause_point = parse_pause_point(response)
|
| 237 |
if pause_point and (pause_point <= i or pause_point > j):
|
| 238 |
# process += f"prompt:\n{prompt},\nresponse:\n{response}\n"
|
|
@@ -264,7 +263,7 @@ Passage:
|
|
| 264 |
|
| 265 |
"""
|
| 266 |
|
| 267 |
-
def quality_gisting(example, pages, model_name, word_limit=600, start_threshold=280, verbose=True):
|
| 268 |
article = example['article']
|
| 269 |
title = example['title']
|
| 270 |
word_count = count_words(article)
|
|
@@ -273,7 +272,7 @@ def quality_gisting(example, pages, model_name, word_limit=600, start_threshold=
|
|
| 273 |
shortened_pages = []
|
| 274 |
for i, page in enumerate(pages):
|
| 275 |
prompt = prompt_shorten_template.format('\n'.join(page))
|
| 276 |
-
response = query_model(prompt, model_name)
|
| 277 |
shortened_text = response.strip()
|
| 278 |
shortened_pages.append(shortened_text)
|
| 279 |
text_output += "[gist] page {}: {}\n\n".format(i, shortened_text)
|
|
@@ -323,7 +322,7 @@ Question:
|
|
| 323 |
|
| 324 |
"""
|
| 325 |
|
| 326 |
-
def quality_parallel_lookup(example, verbose=True):
|
| 327 |
preprocessed_pages = example['pages']
|
| 328 |
article = example['article']
|
| 329 |
title = example['title']
|
|
@@ -360,7 +359,7 @@ def quality_parallel_lookup(example, verbose=True):
|
|
| 360 |
|
| 361 |
page_ids = []
|
| 362 |
|
| 363 |
-
response = query_model(prompt=prompt_lookup).strip()
|
| 364 |
|
| 365 |
try: start = response.index('[')
|
| 366 |
except ValueError: start = len(response)
|
|
@@ -391,7 +390,7 @@ def quality_parallel_lookup(example, verbose=True):
|
|
| 391 |
prompt_answer = prompt_answer_template.format(expanded_shortened_article, q, '\n'.join(options_i))
|
| 392 |
|
| 393 |
model_choice = None
|
| 394 |
-
response = query_model(prompt=prompt_answer)
|
| 395 |
response = response.strip()
|
| 396 |
for j, choice in enumerate(choices):
|
| 397 |
if response.startswith(f"Answer: {choice}") or response.startswith(f"Answer: {choice[1]}"):
|
|
@@ -408,14 +407,25 @@ def quality_parallel_lookup(example, verbose=True):
|
|
| 408 |
|
| 409 |
def query_model_with_quality(
|
| 410 |
index: int,
|
| 411 |
-
model_name: str = 'gemini-pro'
|
|
|
|
| 412 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
example = quality_dev[index]
|
| 414 |
-
pages, pagination = quality_pagination(example, model_name)
|
| 415 |
print('Finish Pagination.')
|
| 416 |
-
example_with_gists, gisting = quality_gisting(example, pages, model_name)
|
| 417 |
print('Finish Gisting.')
|
| 418 |
-
answers = quality_parallel_lookup(example_with_gists)
|
| 419 |
return prompt_pagination_template, pagination, prompt_shorten_template, gisting, prompt_lookup_template, '\n\n'.join(answers)
|
| 420 |
|
| 421 |
|
|
@@ -428,6 +438,11 @@ with gr.Blocks() as demo:
|
|
| 428 |
""")
|
| 429 |
with gr.Tab('ReadAgent (QuALITY)'):
|
| 430 |
llm_options = gr.Radio(llm_api_options, label="Backend LLM API", value='gemini-pro')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
with gr.Row():
|
| 432 |
with gr.Column():
|
| 433 |
index = gr.Dropdown(list(range(len(quality_dev))), value=13, label="QuALITY Index",)
|
|
@@ -443,7 +458,8 @@ with gr.Blocks() as demo:
|
|
| 443 |
fn=query_model_with_quality,
|
| 444 |
inputs=[
|
| 445 |
index,
|
| 446 |
-
llm_options
|
|
|
|
| 447 |
],
|
| 448 |
outputs=[
|
| 449 |
prompt_pagination, pagination_results,
|
|
|
|
| 5 |
import re
|
| 6 |
import string
|
| 7 |
import time
|
| 8 |
+
from typing import Optional, Any
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
import openai
|
| 12 |
import google.generativeai as genai
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def query_gpt_model(
|
| 16 |
prompt: str,
|
| 17 |
llm: str = 'gpt-3.5-turbo-1106',
|
| 18 |
+
client: Optional[Any] = None,
|
| 19 |
temperature: float = 0.0,
|
| 20 |
max_decode_steps: int = 512,
|
| 21 |
seconds_to_reset_tokens: float = 30.0,
|
|
|
|
| 23 |
|
| 24 |
while True:
|
| 25 |
try:
|
| 26 |
+
raw_response = client.chat.completions.with_raw_response.create(
|
| 27 |
model=llm,
|
| 28 |
max_tokens=max_decode_steps,
|
| 29 |
temperature=temperature,
|
|
|
|
| 51 |
def query_gemini_model(
|
| 52 |
prompt: str,
|
| 53 |
llm: str = 'gemini-pro',
|
| 54 |
+
client: Optional[Any] = None,
|
| 55 |
retries: int = 10,
|
| 56 |
) -> str:
|
| 57 |
+
del client
|
| 58 |
model = genai.GenerativeModel(llm)
|
| 59 |
while True and retries > 0:
|
| 60 |
try:
|
|
|
|
| 71 |
def query_model(
|
| 72 |
prompt: str,
|
| 73 |
model_name: str = 'gemini-pro',
|
| 74 |
+
client: Optional[Any] = None,
|
| 75 |
) -> str:
|
| 76 |
model_type = model_name.split('-')[0]
|
| 77 |
if model_type == "gpt":
|
| 78 |
+
return query_gpt_model(prompt, llm=model_name, client=client)
|
| 79 |
elif model_type == "gemini":
|
| 80 |
+
return query_gemini_model(prompt, llm=model_name, client=client)
|
| 81 |
else:
|
| 82 |
raise ValueError('Unexpected model_name: ', model_name)
|
| 83 |
|
|
|
|
| 199 |
|
| 200 |
def quality_pagination(example,
|
| 201 |
model_name='gemini-pro',
|
| 202 |
+
client=None,
|
| 203 |
word_limit=600,
|
| 204 |
start_threshold=280,
|
| 205 |
max_retires=10,
|
|
|
|
| 231 |
pause_point = len(paragraphs)
|
| 232 |
else:
|
| 233 |
prompt = prompt_pagination_template.format(preceding, '\n'.join(passage), end_tag)
|
| 234 |
+
response = query_model(prompt=prompt, model_name=model_name, client=client).strip()
|
| 235 |
pause_point = parse_pause_point(response)
|
| 236 |
if pause_point and (pause_point <= i or pause_point > j):
|
| 237 |
# process += f"prompt:\n{prompt},\nresponse:\n{response}\n"
|
|
|
|
| 263 |
|
| 264 |
"""
|
| 265 |
|
| 266 |
+
def quality_gisting(example, pages, model_name, client=None, word_limit=600, start_threshold=280, verbose=True):
|
| 267 |
article = example['article']
|
| 268 |
title = example['title']
|
| 269 |
word_count = count_words(article)
|
|
|
|
| 272 |
shortened_pages = []
|
| 273 |
for i, page in enumerate(pages):
|
| 274 |
prompt = prompt_shorten_template.format('\n'.join(page))
|
| 275 |
+
response = query_model(prompt, model_name, client)
|
| 276 |
shortened_text = response.strip()
|
| 277 |
shortened_pages.append(shortened_text)
|
| 278 |
text_output += "[gist] page {}: {}\n\n".format(i, shortened_text)
|
|
|
|
| 322 |
|
| 323 |
"""
|
| 324 |
|
| 325 |
+
def quality_parallel_lookup(example, model_name, client, verbose=True):
|
| 326 |
preprocessed_pages = example['pages']
|
| 327 |
article = example['article']
|
| 328 |
title = example['title']
|
|
|
|
| 359 |
|
| 360 |
page_ids = []
|
| 361 |
|
| 362 |
+
response = query_model(prompt=prompt_lookup, model_name=model_name, client=client).strip()
|
| 363 |
|
| 364 |
try: start = response.index('[')
|
| 365 |
except ValueError: start = len(response)
|
|
|
|
| 390 |
prompt_answer = prompt_answer_template.format(expanded_shortened_article, q, '\n'.join(options_i))
|
| 391 |
|
| 392 |
model_choice = None
|
| 393 |
+
response = query_model(prompt=prompt_answer, model_name=model_name, client=client)
|
| 394 |
response = response.strip()
|
| 395 |
for j, choice in enumerate(choices):
|
| 396 |
if response.startswith(f"Answer: {choice}") or response.startswith(f"Answer: {choice[1]}"):
|
|
|
|
| 407 |
|
| 408 |
def query_model_with_quality(
|
| 409 |
index: int,
|
| 410 |
+
model_name: str = 'gemini-pro',
|
| 411 |
+
api_key: Optional[str] = None,
|
| 412 |
):
|
| 413 |
+
# setup api key first
|
| 414 |
+
client = None
|
| 415 |
+
model_type = model_name.split('-')[0]
|
| 416 |
+
if model_type == "gpt":
|
| 417 |
+
# api_key = os.environ.get('OPEN_AI_KEY')
|
| 418 |
+
client = openai.OpenAI(api_key=api_key)
|
| 419 |
+
elif model_type == "gemini":
|
| 420 |
+
# api_key = os.environ.get('GEMINI_API_KEY')
|
| 421 |
+
genai.configure(api_key=api_key)
|
| 422 |
+
|
| 423 |
example = quality_dev[index]
|
| 424 |
+
pages, pagination = quality_pagination(example, model_name, client)
|
| 425 |
print('Finish Pagination.')
|
| 426 |
+
example_with_gists, gisting = quality_gisting(example, pages, model_name, client)
|
| 427 |
print('Finish Gisting.')
|
| 428 |
+
answers = quality_parallel_lookup(example_with_gists, model_name, client)
|
| 429 |
return prompt_pagination_template, pagination, prompt_shorten_template, gisting, prompt_lookup_template, '\n\n'.join(answers)
|
| 430 |
|
| 431 |
|
|
|
|
| 438 |
""")
|
| 439 |
with gr.Tab('ReadAgent (QuALITY)'):
|
| 440 |
llm_options = gr.Radio(llm_api_options, label="Backend LLM API", value='gemini-pro')
|
| 441 |
+
llm_api_key = gr.Textbox(
|
| 442 |
+
label="Paste your OpenAI API key (sk-...) or Gemini API key",
|
| 443 |
+
lines=1,
|
| 444 |
+
type="password",
|
| 445 |
+
)
|
| 446 |
with gr.Row():
|
| 447 |
with gr.Column():
|
| 448 |
index = gr.Dropdown(list(range(len(quality_dev))), value=13, label="QuALITY Index",)
|
|
|
|
| 458 |
fn=query_model_with_quality,
|
| 459 |
inputs=[
|
| 460 |
index,
|
| 461 |
+
llm_options,
|
| 462 |
+
llm_api_key,
|
| 463 |
],
|
| 464 |
outputs=[
|
| 465 |
prompt_pagination, pagination_results,
|