Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload 5 files
Browse files- .gitattributes +2 -0
- app.py +89 -0
- baklava.png +3 -0
- bee.jpg +3 -0
- cats.mp4 +0 -0
- requirements.txt +5 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            baklava.png filter=lfs diff=lfs merge=lfs -text
         | 
| 37 | 
            +
            bee.jpg filter=lfs diff=lfs merge=lfs -text
         | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,89 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
         | 
| 3 | 
            +
            from threading import Thread
         | 
| 4 | 
            +
            import re
         | 
| 5 | 
            +
            import time 
         | 
| 6 | 
            +
            from PIL import Image
         | 
| 7 | 
            +
            import torch
         | 
| 8 | 
            +
            import cv2
         | 
| 9 | 
            +
            import spaces 
         | 
| 10 | 
            +
            model_id = "llava-hf/llava-interleave-qwen-7b-hf"
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            processor = LlavaProcessor.from_pretrained(model_id)
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            model = LlavaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16)
         | 
| 15 | 
            +
            model.to("cuda")
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            def sample_frames(video_file, num_frames) :
         | 
| 18 | 
            +
                video = cv2.VideoCapture(video_file)
         | 
| 19 | 
            +
                total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
         | 
| 20 | 
            +
                interval = total_frames // num_frames
         | 
| 21 | 
            +
                frames = []
         | 
| 22 | 
            +
                for i in range(total_frames):
         | 
| 23 | 
            +
                    ret, frame = video.read()
         | 
| 24 | 
            +
                    pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
         | 
| 25 | 
            +
                    if not ret:
         | 
| 26 | 
            +
                        continue
         | 
| 27 | 
            +
                    if i % interval == 0:
         | 
| 28 | 
            +
                        frames.append(pil_img)
         | 
| 29 | 
            +
                video.release()
         | 
| 30 | 
            +
                return frames
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            @spaces.GPU
         | 
| 33 | 
            +
            def bot_streaming(message, history):
         | 
| 34 | 
            +
              if message["files"]:
         | 
| 35 | 
            +
                image = message["files"][-1]
         | 
| 36 | 
            +
                
         | 
| 37 | 
            +
              else:
         | 
| 38 | 
            +
                # if there's no image uploaded for this turn, look for images in the past turns
         | 
| 39 | 
            +
                # kept inside tuples, take the last one
         | 
| 40 | 
            +
                for hist in history:
         | 
| 41 | 
            +
                  if type(hist[0])==tuple:
         | 
| 42 | 
            +
                    image = hist[0][0]
         | 
| 43 | 
            +
             | 
| 44 | 
            +
              txt = message["text"]
         | 
| 45 | 
            +
              img = message["files"]
         | 
| 46 | 
            +
              ext_buffer =f"'user\ntext': '{txt}', 'files': '{img}' assistantAnswer:"
         | 
| 47 | 
            +
             | 
| 48 | 
            +
              if image is None:
         | 
| 49 | 
            +
                  gr.Error("You need to upload an image or video for LLaVA to work.")
         | 
| 50 | 
            +
                  
         | 
| 51 | 
            +
              video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg")
         | 
| 52 | 
            +
              image_extensions = Image.registered_extensions()
         | 
| 53 | 
            +
              image_extensions = tuple([ex for ex, f in image_extensions.items()])
         | 
| 54 | 
            +
                
         | 
| 55 | 
            +
              if image.endswith(video_extensions):
         | 
| 56 | 
            +
                  image = sample_frames(image, 5)
         | 
| 57 | 
            +
                  image_tokens = "<image>" * 5
         | 
| 58 | 
            +
                  prompt = f"<|im_start|>user {image_tokens}\n{message}<|im_end|><|im_start|>assistant"
         | 
| 59 | 
            +
                  
         | 
| 60 | 
            +
              elif image.endswith(image_extensions):
         | 
| 61 | 
            +
                  image = Image.open(image).convert("RGB")
         | 
| 62 | 
            +
                  prompt = f"<|im_start|>user <image>\n{message}<|im_end|><|im_start|>assistant"
         | 
| 63 | 
            +
             | 
| 64 | 
            +
              inputs = processor(prompt, image, return_tensors="pt").to("cuda", torch.float16)
         | 
| 65 | 
            +
              streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
         | 
| 66 | 
            +
              generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=100)
         | 
| 67 | 
            +
              generated_text = ""
         | 
| 68 | 
            +
             | 
| 69 | 
            +
              thread = Thread(target=model.generate, kwargs=generation_kwargs)
         | 
| 70 | 
            +
              thread.start()
         | 
| 71 | 
            +
             | 
| 72 | 
            +
              
         | 
| 73 | 
            +
             | 
| 74 | 
            +
              buffer = ""
         | 
| 75 | 
            +
              for new_text in streamer:
         | 
| 76 | 
            +
                
         | 
| 77 | 
            +
                buffer += new_text
         | 
| 78 | 
            +
                print(buffer)
         | 
| 79 | 
            +
                generated_text_without_prompt = buffer[len(ext_buffer):]
         | 
| 80 | 
            +
                time.sleep(0.01)
         | 
| 81 | 
            +
                yield generated_text_without_prompt
         | 
| 82 | 
            +
             | 
| 83 | 
            +
             | 
| 84 | 
            +
            demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA Interleave", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]},
         | 
| 85 | 
            +
                                                                                  {"text": "How to make this pastry?", "files":["./baklava.png"]},
         | 
| 86 | 
            +
                                                                                  {"text": "What type of cats are these?", "files":["./cats.mp4"]}], 
         | 
| 87 | 
            +
                                    description="Try [LLaVA Interleave](https://huggingface.co/docs/transformers/main/en/model_doc/llava) in this demo (more specifically, the [Qwen-1.5-7B variant](https://huggingface.co/llava-hf/llava-interleave-qwen-7b-hf)). Upload an image or a video, and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
         | 
| 88 | 
            +
                                    stop_btn="Stop Generation", multimodal=True)
         | 
| 89 | 
            +
            demo.launch(debug=True)
         | 
    	
        baklava.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        bee.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        cats.mp4
    ADDED
    
    | Binary file (115 kB). View file | 
|  | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,5 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            torch
         | 
| 2 | 
            +
            git+https://github.com/huggingface/transformers.git
         | 
| 3 | 
            +
            spaces
         | 
| 4 | 
            +
            opencv-python
         | 
| 5 | 
            +
            accelerate
         | 
