Spaces:
Sleeping
Sleeping
Commit
·
5230215
1
Parent(s):
a9b3a0e
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoFeatureExtractor, AutoModel
|
| 2 |
+
import torch
|
| 3 |
+
from torchvision.transforms.functional import to_pil_image
|
| 4 |
+
from einops import rearrange, reduce
|
| 5 |
+
from skops import hub_utils
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import seaborn as sns
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
import os
|
| 11 |
+
import pickle
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
setups = ['ResNet-50', 'ViT', 'DINO-ResNet-50', 'DINO-ViT']
|
| 15 |
+
embedder_names = ['microsoft/resnet-50', 'google/vit-base-patch16-224', 'Ramos-Ramos/dino-resnet-50', 'facebook/dino-vitb16']
|
| 16 |
+
gam_names = ['emb-gam-resnet', 'emb-gam-vit', 'emb-gam-dino-resnet', 'emb-gam-dino']
|
| 17 |
+
|
| 18 |
+
embedder_to_setup = dict(zip(embedder_names, setups))
|
| 19 |
+
gam_to_setup = dict(zip(gam_names, setups))
|
| 20 |
+
|
| 21 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 22 |
+
|
| 23 |
+
embedders = {}
|
| 24 |
+
for name in embedder_names:
|
| 25 |
+
embedder = {}
|
| 26 |
+
embedder['feature_extractor'] = AutoFeatureExtractor.from_pretrained(name)
|
| 27 |
+
embedder['model'] = AutoModel.from_pretrained(name).eval().to(device)
|
| 28 |
+
|
| 29 |
+
if 'resnet-50' in name:
|
| 30 |
+
embedder['num_patches_side'] = 7
|
| 31 |
+
embedder['embedding_postprocess'] = lambda x: rearrange(x.last_hidden_state, 'b d h w -> b (h w) d')
|
| 32 |
+
else:
|
| 33 |
+
embedder['num_patches_side'] = embedder['model'].config.image_size // embedder['model'].config.patch_size
|
| 34 |
+
embedder['embedding_postprocess'] = lambda x: x.last_hidden_state[:, 1:]
|
| 35 |
+
embedders[embedder_to_setup[name]] = embedder
|
| 36 |
+
|
| 37 |
+
gams = {}
|
| 38 |
+
for name in gam_names:
|
| 39 |
+
if not os.path.exists(name):
|
| 40 |
+
os.mkdir(name)
|
| 41 |
+
hub_utils.download(repo_id=f'Ramos-Ramos/{name}', dst=name)
|
| 42 |
+
|
| 43 |
+
with open(f'{name}/model.pkl', 'rb') as infile:
|
| 44 |
+
gams[gam_to_setup[name]] = pickle.load(infile)
|
| 45 |
+
|
| 46 |
+
labels = [
|
| 47 |
+
'tench',
|
| 48 |
+
'English springer',
|
| 49 |
+
'cassette player',
|
| 50 |
+
'chain saw',
|
| 51 |
+
'church',
|
| 52 |
+
'French horn',
|
| 53 |
+
'garbage truck',
|
| 54 |
+
'gas pump',
|
| 55 |
+
'golf ball',
|
| 56 |
+
'parachute'
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
def visualize(input_img, visual_emb_gam_setups, show_scores, show_cbars):
|
| 60 |
+
'''Visualizes the patch contributions to all labels of one or more visual
|
| 61 |
+
Emb-GAMs'''
|
| 62 |
+
|
| 63 |
+
if not visual_emb_gam_setups:
|
| 64 |
+
fig = plt.Figure()
|
| 65 |
+
return fig, fig
|
| 66 |
+
|
| 67 |
+
patch_contributions = {}
|
| 68 |
+
|
| 69 |
+
# get patch contributions per Emb-GAM
|
| 70 |
+
for setup in visual_emb_gam_setups:
|
| 71 |
+
# prepare embedding model
|
| 72 |
+
embedder_setup = embedders[setup]
|
| 73 |
+
feature_extractor = embedder_setup['feature_extractor']
|
| 74 |
+
embedding_postprocess = embedder_setup['embedding_postprocess']
|
| 75 |
+
num_patches_side = embedder_setup['num_patches_side']
|
| 76 |
+
|
| 77 |
+
# prepare GAM
|
| 78 |
+
gam = gams[setup]
|
| 79 |
+
|
| 80 |
+
# get patch embeddings
|
| 81 |
+
inputs = {
|
| 82 |
+
k: v.to(device)
|
| 83 |
+
for k, v
|
| 84 |
+
in feature_extractor(input_img, return_tensors='pt').items()
|
| 85 |
+
}
|
| 86 |
+
with torch.no_grad():
|
| 87 |
+
patch_embeddings = embedding_postprocess(
|
| 88 |
+
embedder_setup['model'](**inputs)
|
| 89 |
+
).cpu()[0]
|
| 90 |
+
|
| 91 |
+
# get patch emebddings
|
| 92 |
+
patch_contributions[setup] = (
|
| 93 |
+
gam.coef_ \
|
| 94 |
+
@ patch_embeddings.T.numpy() \
|
| 95 |
+
+ gam.intercept_.reshape(-1, 1) / (num_patches_side ** 2)
|
| 96 |
+
).reshape(-1, num_patches_side, num_patches_side)
|
| 97 |
+
|
| 98 |
+
# plot heatmaps
|
| 99 |
+
|
| 100 |
+
multiple_setups = len(visual_emb_gam_setups) > 1
|
| 101 |
+
|
| 102 |
+
# set up figure
|
| 103 |
+
fig, axs = plt.subplots(
|
| 104 |
+
len(visual_emb_gam_setups),
|
| 105 |
+
11,
|
| 106 |
+
figsize=(20, round(10/4 * len(visual_emb_gam_setups)))
|
| 107 |
+
)
|
| 108 |
+
gs_ax = axs[0, 0] if multiple_setups else axs[0]
|
| 109 |
+
gs = gs_ax.get_gridspec()
|
| 110 |
+
ax_rm = axs[:, 0] if multiple_setups else [axs[0]]
|
| 111 |
+
for ax in ax_rm:
|
| 112 |
+
ax.remove()
|
| 113 |
+
ax_orig_img = fig.add_subplot(gs[:, 0] if multiple_setups else gs[0])
|
| 114 |
+
|
| 115 |
+
# plot original image
|
| 116 |
+
ax_orig_img.imshow(input_img)
|
| 117 |
+
ax_orig_img.axis('off')
|
| 118 |
+
|
| 119 |
+
# plot patch contributions
|
| 120 |
+
axs_maps = axs[:, 1:] if multiple_setups else [axs[1:]]
|
| 121 |
+
for i, setup in enumerate(visual_emb_gam_setups):
|
| 122 |
+
vmin = patch_contributions[setup].min()
|
| 123 |
+
vmax = patch_contributions[setup].max()
|
| 124 |
+
for j in range(10):
|
| 125 |
+
ax = axs_maps[i][j]
|
| 126 |
+
sns.heatmap(
|
| 127 |
+
patch_contributions[setup][j],
|
| 128 |
+
ax=ax,
|
| 129 |
+
square=True,
|
| 130 |
+
vmin=vmin,
|
| 131 |
+
vmax=vmax,
|
| 132 |
+
cbar=show_cbars
|
| 133 |
+
)
|
| 134 |
+
if show_scores:
|
| 135 |
+
ax.set_xlabel(f'{patch_contributions[setup][j].sum():.2f}')
|
| 136 |
+
if j == 0:
|
| 137 |
+
ax.set_ylabel(setup)
|
| 138 |
+
if i == 0:
|
| 139 |
+
ax.set_title(labels[j])
|
| 140 |
+
ax.set_xticks([])
|
| 141 |
+
ax.set_yticks([])
|
| 142 |
+
|
| 143 |
+
plt.tight_layout()
|
| 144 |
+
|
| 145 |
+
return fig
|
| 146 |
+
|
| 147 |
+
demo = gr.Interface(
|
| 148 |
+
fn=visualize,
|
| 149 |
+
inputs=[
|
| 150 |
+
gr.Image(shape=(224, 224), type='pil', label='Input image'),
|
| 151 |
+
gr.CheckboxGroup(setups, value=setups, label='Visual Emb-GAM'),
|
| 152 |
+
gr.Checkbox(label='Show scores'),
|
| 153 |
+
gr.Checkbox(label='Show color bars')
|
| 154 |
+
],
|
| 155 |
+
outputs=[
|
| 156 |
+
gr.Plot(label='Patch contributions'),
|
| 157 |
+
]
|
| 158 |
+
)
|
| 159 |
+
demo.launch(debug=True)
|