File size: 13,580 Bytes
d1369a2
9eda2f5
 
 
d1369a2
0b50ce4
 
 
 
 
 
d1369a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3fa801
 
 
 
 
 
 
 
d1369a2
 
 
d3fa801
d1369a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac9071c
 
 
d1369a2
 
ac9071c
d0e7981
 
ac9071c
 
 
 
 
 
0b50ce4
d0e7981
0b50ce4
d0e7981
221cc42
d1369a2
 
 
 
15b45d6
0b50ce4
d1369a2
221cc42
ac9071c
d1369a2
 
 
15b45d6
 
 
 
d1369a2
65fefb5
 
 
 
 
 
d1369a2
65fefb5
 
f89cae0
 
 
 
8fe9801
 
d1369a2
 
 
15b45d6
d1369a2
 
 
 
 
 
 
 
 
 
 
 
65fefb5
15b45d6
d1369a2
 
0b50ce4
d1369a2
 
9eda2f5
d0e7981
ac9071c
 
d0e7981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3fa801
 
 
 
d0e7981
 
 
0b50ce4
 
 
 
 
 
 
d3fa801
 
 
d0e7981
 
 
 
 
d3fa801
d0e7981
d3fa801
d0e7981
 
 
 
 
ac9071c
d0e7981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221cc42
 
0b50ce4
 
221cc42
d0e7981
 
 
 
 
 
 
0b50ce4
d0e7981
0b50ce4
221cc42
 
 
0b50ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221cc42
 
 
 
 
 
 
 
 
 
 
 
 
d0e7981
0b50ce4
221cc42
d0e7981
d3fa801
221cc42
 
d3fa801
ac9071c
 
341d615
9eda2f5
 
ac9071c
 
9eda2f5
ac9071c
9eda2f5
 
ac9071c
9eda2f5
 
 
 
 
 
 
bc4f4c3
9eda2f5
 
d0e7981
9eda2f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import polars as pl
from data import data_df

from types import SimpleNamespace

from convert import verify_and_return_presult


valid_pitch = pl.col('x').is_not_null() & pl.col('y').is_not_null() & (pl.col('ballSpeed') > 0)


def filter_data_by_date_and_game_kind(data, start_date=None, end_date=None, game_kind=None):
  if start_date is not None:
    data = data.filter(pl.col('date') >= start_date)
  if end_date is not None:
    data = data.filter(pl.col('date') <= end_date)
  if game_kind is not None:
    data = data.filter(pl.col('coarse_game_kind') == game_kind)
  return data

def compute_team_games(data):
  data = (
      data
      .with_columns(
          pl.col('gameId').unique().len().over('HomeTeamNameES').alias('home_games'),
          pl.col('gameId').unique().len().over('VisitorTeamNameES').alias('visitor_games')
      )
  )
  game_data = (
      data
      .group_by('HomeTeamNameES')
      .first()
      [['HomeTeamNameES', 'home_games']]
      .rename({'HomeTeamNameES': 'team'})
      .join(
          (
              data
              .group_by('VisitorTeamNameES')
              .first()
              [['VisitorTeamNameES', 'visitor_games']]
              .rename({'VisitorTeamNameES': 'team'})
          ),
          on='team',
          how='full'
      )
      .fill_null(0)
      .with_columns(
        (pl.col('home_games')+pl.col('visitor_games')).alias('games'),
        pl.when(pl.col('team').is_null())
        .then(pl.col('team_right'))
        .otherwise(pl.col('team')).alias('team')
      )
  )


  return (
      data
      .drop('home_games', 'visitor_games')
      .join(
          game_data[['team', 'games']].rename({'games': 'home_games'}),
          left_on='HomeTeamNameES',
          right_on='team'
      )
      .join(
          game_data[['team', 'games']].rename({'games': 'visitor_games'}),
          left_on='VisitorTeamNameES',
          right_on='team'
      )
  )


def compute_pitch_stats(data, player_type, pitch_class_type, min_pitches=1, pitcher_lr='both', batter_lr='both', group_by_team=False):
  assert pitcher_lr in ('both', 'l', 'r')
  assert batter_lr in ('both', 'l', 'r')
  assert player_type in ('pitcher', 'batter')
  assert pitch_class_type in ('general', 'specific')

  pitching = player_type in ('pitcher', )

  if pitcher_lr != 'both':
    data = data.filter(pl.col('pitLR') == pitcher_lr)

  if batter_lr != 'both':
    data = data.filter(pl.col('batLR') == batter_lr)
    
  id_cols = ['pitId' if player_type == 'pitcher' else 'batId']
  team_col = 'pitcher_team_name_short' if pitching else 'batter_team_name_short'
  if group_by_team:
    id_cols.append(team_col)
  name_col = 'pitcher_name' if player_type == 'pitcher' else 'batter_name'
  pitch_col = 'ballKind_code' if pitch_class_type == 'specific' else 'general_ballKind_code'
  pitch_name_col = 'ballKind' if pitch_class_type == 'specific' else 'general_ballKind'
  pitch_stats = (
      data
      .with_columns((pl.col('ballSpeed') / 1.609).round(1).alias('mph'))
      .group_by(*id_cols, pitch_col)
      .agg(
          pl.first(name_col),
          pl.col('pitLR').first().str.to_uppercase().alias('Throws'),
          *([pl.first('general_ballKind')] if pitch_class_type == 'specific' else []),
          pl.first(pitch_name_col),
          pl.len().alias('count'),
          pl.when(pl.col('x').is_not_null() & pl.col('y').is_not_null() & (pl.col('ballSpeed') > 0)).then('ballSpeed').mean().alias('Avg KPH'),
          pl.col('ballSpeed').max().alias('Max KPH'),
          pl.when(pl.col('x').is_not_null() & pl.col('y').is_not_null() & (pl.col('ballSpeed') > 0)).then('mph').mean().round(1).alias('Avg MPH'),
          pl.col('mph').max().alias('Max MPH'),
          pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
          (pl.col('swing').sum() / pl.col('pitch').sum()).alias('Swing%'),
          ((pl.col('swing') & pl.col('zone')).sum() / pl.col('pitch').sum()).alias('Z-Swing%'),
          ((pl.col('swing') & ~pl.col('zone')).sum() / pl.col('pitch').sum()).alias('Chase%'),
          ((pl.col('swing') & ~pl.col('whiff')).sum()/pl.col('swing').sum()).alias('Contact%'),
          ((pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(pl.col('zone') & pl.col('swing')).sum()).alias('Z-Contact%'),
          ((~pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(~pl.col('zone') & pl.col('swing')).sum()).alias('O-Contact%'),
          (pl.col('whiff').sum() / pl.col('swing').sum()).alias('Whiff%'),
          (pl.col('whiff').sum() / pl.col('pitch').sum()).alias('SwStr%'),
          (pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%'),
          (pl.col('zone').sum() / pl.col('pitch').sum()).alias('Zone%'),
          (pl.when(pl.col('pitLR') == 'r').then(pl.col('x') < 0).otherwise(pl.col('x') > 0)).mean().alias('Glove%'),
          (pl.when(pl.col('pitLR') == 'r').then(pl.col('x') >= 0).otherwise(pl.col('x') <= 0)).mean().alias('Arm%'),
          (pl.col('y') > 125).mean().alias('High%'),
          (pl.col('y') <= 125).mean().alias('Low%'),
          (pl.col('x').is_between(-20, 20) & pl.col('y').is_between(100, 100+50)).mean().alias('MM%')
      )
      .with_columns(
          (pl.col('count')/pl.sum('count').over('pitId')).alias('usage'),
          (pl.col('count') >= min_pitches).alias('qualified'),
      )
      .explode('batType')
      .unnest('batType')
      .pivot(on='batType', values='proportion')
      .fill_null(0)
      .with_columns(
          (pl.col('G') + pl.col('B')).alias('GB%'),
          (pl.col('F') + pl.col('P')).alias('FB%'),
          pl.col('L').alias('LD%').round(2),
      )
      .drop('G', 'F', 'B', 'P', 'L', 'null')
      .with_columns(
          (pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=((stat in ['FB%', 'LD%'] or 'Contact%' in stat)))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
          for stat in ['Avg KPH', 'Max KPH', 'Avg MPH', 'Max MPH', 'Swing%', 'Z-Swing%', 'Chase%', 'Contact%', 'Z-Contact%', 'O-Contact%', 'SwStr%', 'Whiff%', 'CSW%', 'GB%', 'FB%', 'LD%', 'Zone%']
      )
      .rename({pitch_col: 'ballKind_code', pitch_name_col: 'ballKind'} if pitch_class_type == 'general' else {})
      .sort(id_cols[0], 'count', descending=[False, True])
  )
  return pitch_stats

def compute_player_stats(data, player_type, qual='qualified', pitcher_lr='both', batter_lr='both', group_by_team=False):
  assert pitcher_lr in ('both', 'l', 'r')
  assert batter_lr in ('both', 'l', 'r')
  assert player_type in ('pitcher', 'batter', 'team pitching', 'team batting') 

  # pitching or batting, player or team
  pitching = player_type in ('pitcher', 'team pitching')
  team = player_type in ('team pitching', 'team batting')

  # handedness filters
  if pitcher_lr != 'both':
    data = data.filter(pl.col('pitLR') == pitcher_lr)
  if batter_lr != 'both':
    data = data.filter(pl.col('batLR') == batter_lr)

  if pitching:
    over_col = 'pitId' if not team else 'pitcher_team_name_short'
  else:
    over_col = 'batId' if not team else 'batter_team_name_short'
  data = (
      compute_team_games(data)
      .with_columns(
          pl.when(pl.col('half_inning').str.ends_with('1')).then('home_games').otherwise('visitor_games').first().over('pitId').alias('games'),
          # pl.col('inning_code').unique().len().over(over_col).alias('IP'),
          (pl.col('bso').struct.field('o').cast(pl.Int32) - pl.col('beforeBso').struct.field('o').cast(pl.Int32)).sum().mul(1/3).over(over_col).alias('IP'),
          pl.col('pa_code').unique().len().over(over_col).alias('PA'),
          # pl.col('presult').is_in(verify_and_return_presult([
            # 'Groundout', 'Flyout', 'Lineout', 'Groundout (Double play)',
            # 'Foul fly', 'Foul line (?)',
            # 'Sacrifice bunt', 'Sacrifice fly',
            # "Fielder's choice", "Sacrifice fielder's choice",
            # 'Bunt strikeout', 'Swinging strikeout', 'Looking strikeout'
          # ])).sum().over('pitId').mul(1/3).alias('IP')
      )
  )

  # qualifiers
  qualified_factor = 1 if pitching else 3.1
  qual_col = 'IP' if pitching else 'PA'
  if qual == 'qualified':
    data = data.with_columns((pl.col(qual_col) >= qualified_factor * pl.col('games')).alias('qualified'))
  else:
    data = data.with_columns((pl.col(qual_col) >= qual).alias('qualified'))

  # percentile ascending/descending
  if pitching:
    stat_descending_pctl = lambda stat: stat in ['BB%', 'FB%', 'LD%', 'Z-Swing%'] or 'Contact%' in stat
  else:
    stat_descending_pctl = lambda stat: not (stat in ['BB%', 'FB%', 'LD%', 'Swing%', 'Z-Swing%'] or 'Contact%' in stat)

  # col names
  match player_type:
    case 'pitcher':
      id_cols = ['pitId']
      name_col = 'pitcher_name'
    case 'batter':
      id_cols = ['batId']
      name_col = 'batter_name'
    case _:
      id_cols = []
      name_col = None
      
  team_col = 'pitcher_team_name_short' if pitching else 'batter_team_name_short'
  if group_by_team or team:
    id_cols.append(team_col)
  
  handedness_col = 'pitLR' if pitching else 'batLR'
  new_handedness_col = 'Throws' if pitching else 'Bats'
  player_stats = (
    data
    .with_columns(pl.when(pl.col('general_ballKind_code').is_in(['4S', 'FC', 'SI'])).then(pl.when(valid_pitch).then('ballSpeed').mean().over('pitId', 'general_ballKind_code')).mul(1/1.609).round(1).alias('FB Velo'))
    .group_by(id_cols)
    .agg(
        *([pl.col(name_col).first()] if not team else []),
        *([] if group_by_team or team else [pl.col(team_col).last()]),
        *(
          [pl.col(handedness_col).first().str.to_uppercase().alias(new_handedness_col) ]
          if not (team and ((pitcher_lr == 'both') if pitching else (batter_lr == 'both')))
          else []
        ),
        pl.col('IP').first(),
        pl.col('PA').first(),
        pl.col('FB Velo').max(),
        (pl.when(pl.col('presult').str.contains('strikeout')).then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('K%'),
        (pl.when(pl.col('presult') == 'Walk').then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('BB%'),
        pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
        (pl.col('swing').sum() / pl.col('pitch').sum()).alias('Swing%'),
        ((pl.col('swing') & pl.col('zone')).sum() / pl.col('pitch').sum()).alias('Z-Swing%'),
        ((pl.col('swing') & ~pl.col('zone')).sum() / pl.col('pitch').sum()).alias('Chase%'),
        ((pl.col('swing') & ~pl.col('whiff')).sum()/pl.col('swing').sum()).alias('Contact%'),
        ((pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(pl.col('zone') & pl.col('swing')).sum()).alias('Z-Contact%'),
        ((~pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(~pl.col('zone') & pl.col('swing')).sum()).alias('O-Contact%'),
        (pl.col('whiff').sum() / pl.col('swing').sum()).alias('Whiff%'),
        (pl.col('whiff').sum() / pl.col('pitch').sum()).alias('SwStr%'),
        (pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%'),
        (pl.col('zone').sum() / pl.col('pitch').sum()).alias('Zone%'),
        (pl.when(pl.col('pitLR') == 'r').then(pl.col('x') < 0).otherwise(pl.col('x') > 0)).mean().alias('Glove%'),
        (pl.when(pl.col('pitLR') == 'r').then(pl.col('x') >= 0).otherwise(pl.col('x') <= 0)).mean().alias('Arm%'),
        (pl.col('y') > 125).mean().alias('High%'),
        (pl.col('y') <= 125).mean().alias('Low%'),
        (pl.col('x').is_between(-20, 20) & pl.col('y').is_between(100, 100+50)).mean().alias('MM%'),
        pl.first('qualified')
    )
    .explode('batType')
    .unnest('batType')
    .pivot(on='batType', values='proportion')
    .fill_null(0)
    .with_columns(
        (pl.col('G') + pl.col('B')).alias('GB%'),
        (pl.col('F') + pl.col('P')).alias('FB%'),
        pl.col('L').alias('LD%'),
    )
    .drop('G', 'F', 'B', 'P', 'L')
    .with_columns(
        (pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=stat_descending_pctl(stat))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
        for stat in ['FB Velo', 'K%', 'BB%', 'Swing%', 'Z-Swing%', 'Chase%', 'Contact%', 'Z-Contact%', 'O-Contact%', 'SwStr%', 'Whiff%', 'CSW%', 'GB%', 'FB%', 'LD%', 'Zone%']
    )
    .sort(qual_col, descending=True)
  )
  return player_stats


def get_pitcher_stats(id, lr='both', game_kind=None, start_date=None, end_date=None, min_ip=1, min_pitches=1, pitch_class_type='specific'):
  
  source_data = data_df
  source_data = filter_data_by_date_and_game_kind(source_data, start_date=start_date, end_date=end_date, game_kind=game_kind)

  # if lr is not None:
    # source_data =

  pitch_stats = compute_pitch_stats(source_data, player_type='pitcher', pitch_class_type=pitch_class_type, min_pitches=min_pitches, batter_lr=lr, group_by_team=False).filter(pl.col('pitId') == id)

  pitch_shapes = (
      (source_data.filter(pl.col('batLR') == lr) if lr != 'both' else source_data)
      .filter(
          (pl.col('pitId') == id) &
          pl.col('x').is_not_null() &
          pl.col('y').is_not_null() &
          (pl.col('ballSpeed') > 0)
      )
      [['pitId', 'general_ballKind_code', 'ballKind_code', 'ballSpeed', 'x', 'y']]
      .with_columns((pl.col('ballSpeed')/1.609).alias('ballSpeed_mph'))
  )

  pitcher_stats = compute_player_stats(source_data, player_type='pitcher', qual=min_ip, batter_lr=lr, group_by_team=False).filter(pl.col('pitId') == id)
  return SimpleNamespace(pitcher_stats=pitcher_stats, pitch_stats=pitch_stats, pitch_shapes=pitch_shapes)