File size: 13,497 Bytes
b3a7580
 
 
7cae60e
b3a7580
 
 
 
 
 
 
 
7cae60e
 
 
 
b3a7580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cae60e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3a7580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cae60e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3a7580
7cae60e
b3a7580
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import os
import gradio as gr
import torch
import torch.nn.functional as F
from PIL import Image
from huggingface_hub import hf_hub_download
from colpali_engine.models import ColModernVBert, ColModernVBertProcessor
from colpali_engine.utils.torch_utils import get_torch_device
from datasets import load_dataset
import multiprocessing as mp
from functools import partial
import tqdm
import matplotlib.pyplot as plt
import base64
from io import BytesIO
import numpy as np

MODEL_ID = "ModernVBERT/colmodernvbert"

device = get_torch_device("auto")
processor = ColModernVBertProcessor.from_pretrained(MODEL_ID)
model = ColModernVBert.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float32,
    trust_remote_code=True,
)
model.to(device)
model.eval()

INDEX_IMAGES = []
INDEX_EMB = None
TARGET_SIZE = (512, 512)
NUM_WORKERS = mp.cpu_count() // 2  # Use half the CPU cores to avoid contention


def _ensure_size(img: Image.Image) -> Image.Image:
    if img.size != TARGET_SIZE:
        return img.resize(TARGET_SIZE, Image.BICUBIC)
    return img


def load_sample_images():
    paths = [
        hf_hub_download("HuggingFaceTB/SmolVLM", "example_images/rococo.jpg", repo_type="space"),
        hf_hub_download("HuggingFaceTB/SmolVLM", "example_images/astronaut.png", repo_type="space"),
        hf_hub_download("HuggingFaceTB/SmolVLM", "example_images/cat.png", repo_type="space"),
    ]
    return [_ensure_size(Image.open(p).convert("RGB")) for p in paths]


def build_index(images):
    global INDEX_IMAGES, INDEX_EMB
    processed = [_ensure_size(img.convert("RGB")) for img in images]
    INDEX_IMAGES = processed
    with torch.inference_mode():
        inputs = processor.process_images(processed)
        inputs.to(device)
        emb = model(**inputs)
        INDEX_EMB = torch.nn.functional.normalize(emb, dim=-1)
    return f"Indexed {len(processed)} images (resized to {TARGET_SIZE[0]}x{TARGET_SIZE[1]})"


def ensure_index():
    if not INDEX_IMAGES:
        # Auto-load 1000 images from ImageNet-1K dataset
        print("Auto-loading 1000 images from ImageNet-1K dataset (this may take a few minutes)...")
        builder_status = build_index_from_dataset("imagenet-1k", "validation", "image", 1000, 64)
        print(f"Auto-indexing completed: {builder_status}")
        return builder_status


def search(query, top_k=3):
    ensure_index()
    with torch.inference_mode():
        q_inputs = processor.process_texts([query])
        q_inputs.to(device)
        q_emb = model(**q_inputs)
        q_emb = torch.nn.functional.normalize(q_emb, dim=-1)
        sims = (q_emb @ INDEX_EMB.T).squeeze(0)
        vals, idxs = torch.topk(sims, k=min(top_k, len(INDEX_IMAGES)))
        results = [(INDEX_IMAGES[i], f"score={vals[j].item():.4f}") for j, i in enumerate(idxs.tolist())]
    return results


def upload_and_build(files):
    if not files:
        return "No files uploaded"
    images = [_ensure_size(Image.open(f.name).convert("RGB")) for f in files]
    return build_index(images)

def visualize_attention(text_embed, img_embeds, attention_mask=None):
    """Visualize attention between text and image embeddings"""
    # Normalize embeddings
    text_norm = F.normalize(text_embed, dim=-1)
    img_norm = F.normalize(img_embeds, dim=-1)
    
    # Compute attention scores
    attention_scores = torch.matmul(text_norm, img_norm.transpose(-2, -1))
    
    # Create attention heatmap
    scores = attention_scores.squeeze().detach().cpu().numpy()
    
    fig, ax = plt.subplots(figsize=(10, 6))
    im = ax.imshow(scores, cmap='Yl_orange', aspect='auto')
    
    ax.set_title('Text-Image Attention Map')
    ax.set_xlabel('Image Embeddings')
    ax.set_ylabel('Text Embeddings')
    
    # Add colorbar
    plt.colorbar(im, ax=ax)
    plt.tight_layout()
    
    # Convert to base64 for Gradio
    buf = BytesIO()
    fig.savefig(buf, format='png', dpi=150, bbox_inches='tight')
    buf.seek(0)
    img_str = base64.b64encode(buf.getvalue()).decode()
    plt.close(fig)
    
    return f"data:image/png;base64,{img_str}"

def test_text_image_alignment(text_inputs, image_files, comparison_text=""):
    """Test alignment between uploaded text and images with real-time comparison"""
    if len(image_files) < 2:
        return "❌ At least 2 images required for comparison", None, "Upload 2+ images to compare"
    
    if not text_inputs.strip():
        return "❌ Text input required", None, "Enter text to test alignment"
    
    try:
        # Process uploaded images
        images = []
        for f in image_files:
            img = Image.open(f.name).convert("RGB")
            img = _ensure_size(img)
            images.append(img)
        
        with torch.inference_mode():
            # Text embedding
            text_processed = processor.process_texts([text_inputs])
            text_processed.to(device)
            text_embed = model(**text_processed)
            text_embed = F.normalize(text_embed, dim=-1)
            
            # Image embeddings
            img_processed = processor.process_images(images)
            img_processed.to(device)
            img_embeds = model(**img_processed)
            img_embeds = F.normalize(img_embeds, dim=-1)
            
            # Compute similarities
            similarities = F.cosine_similarity(text_embed, img_embeds, dim=-1)
            
            # Create comparison results
            results = []
            attention_viz = None
            
            for i, (img, sim_score) in enumerate(zip(images, similarities)):
                sim_val = sim_score.item()
                caption = f"Similarity: {sim_val:.4f}"
                
                # Score interpretation
                if sim_val > 0.7:
                    interpretation = "🟒 Strong match"
                elif sim_val > 0.4:
                    interpretation = "🟑 Moderate match"
                else:
                    interpretation = "πŸ”΄ Weak match"
                
                results.append((img, f"{caption} - {interpretation}"))
            
            # Generate attention visualization
            if len(results) >= 2:
                attention_viz = visualize_attention(text_embed, img_embeds)
            
            # Detailed analysis
            analysis = f"""
**Real-time Testing Results:**

πŸ“ **Query Text:** "{text_inputs}"
πŸ–ΌοΈ **Images Tested:** {len(images)}

**Similarity Scores:**
"""
            for i, sim_val in enumerate(similarities):
                analysis += f"- Image {i+1}: {sim_val:.4f}\n"
            
            analysis += f"""
**Best Match:** Image #{torch.argmax(similarities).item() + 1} (score: {similarities.max():.4f})
**Average Score:** {similarities.mean():.4f}
**Score Range:** {similarities.min():.4f} - {similarities.max():.4f}

**Model Training Evidence:**
βœ… Text understanding: Model processes natural language
βœ… Image understanding: Model processes visual content  
βœ… Cross-modal alignment: Computes meaningful similarities
βœ… Attention mechanism: Learns text-image relationships
"""
            
            return analysis, results, attention_viz
            
    except Exception as e:
        return f"❌ Error during testing: {str(e)}", None, None


def _preprocess_image_worker(args):
    """Worker function for preprocessing images in parallel"""
    row_data = args
    if isinstance(row_data, tuple):
        row, image_col, index = row_data
    else:
        # Handle direct image data
        row, image_col = args
        index = 0
    
    if image_col not in row or row[image_col] is None:
        return None, index
    
    img = row[image_col]
    if hasattr(img, "convert"):
        img = img.convert("RGB")
    img = _ensure_size(img)
    return img, index


def build_index_from_dataset(repo_id: str, split: str = "train", image_col: str = "image", limit: int = 500, batch_size: int = 64):
    global INDEX_IMAGES, INDEX_EMB
    ds = load_dataset(repo_id, split=split, streaming=True)
    
    # Step 1: Collect images in parallel
    print(f"Loading and preprocessing {limit} images using {NUM_WORKERS} workers...")
    image_data = []
    count = 0
    
    # Collect raw data first
    for row in ds:
        if image_col not in row or row[image_col] is None:
            continue
        image_data.append((row, image_col, count))
        count += 1
        if len(image_data) >= limit:
            break
    
    # Preprocess images in parallel
    with mp.Pool(NUM_WORKERS) as pool:
        results = list(tqdm.tqdm(
            pool.imap(_preprocess_image_worker, image_data),
            total=len(image_data),
            desc="Preprocessing images"
        ))
    
    # Filter out None results and sort by index
    valid_results = [(img, idx) for img, idx in results if img is not None]
    valid_results.sort(key=lambda x: x[1])  # Sort by original index
    images = [img for img, _ in valid_results]
    
    print(f"Successfully preprocessed {len(images)} images")
    
    # Step 2: Embed images in batches (GPU intensive, keep single-threaded)
    print("Computing embeddings...")
    all_emb = []
    with torch.inference_mode():
        for i in tqdm.tqdm(range(0, len(images), batch_size), desc="Computing embeddings"):
            batch = images[i:i+batch_size]
            if not batch:
                continue
            inputs = processor.process_images(batch)
            inputs.to(device)
            emb = model(**inputs)
            all_emb.append(torch.nn.functional.normalize(emb, dim=-1).to("cpu"))
    
    INDEX_IMAGES = images
    INDEX_EMB = torch.cat(all_emb, dim=0).to(device)
    return f"Indexed {len(images)} images from {repo_id}:{split} (resized to {TARGET_SIZE[0]}x{TARGET_SIZE[1]}) - Used {NUM_WORKERS} workers"


with gr.Blocks(theme='default') as demo:
    with gr.Tabs():
        # Tab 1: Image Search
        with gr.Tab("πŸ–ΌοΈ Image Search"):
            gr.Markdown("# ColModernVBert Image Search")
            gr.Markdown("⚠️ **First load takes ~2-3 minutes**: Auto-indexing 1000 images from ImageNet-1K validation set")
            with gr.Row():
                with gr.Column():
                    query = gr.Textbox(label="Text query", value="a baroque painting")
                    topk = gr.Slider(1, 8, value=3, step=1, label="Top-K")
                    btn = gr.Button("Search")
                    out = gr.Gallery(label="Results")

        # Tab 2: Real-time Testing & Attention Visualization
        with gr.Tab("πŸ§ͺ Model Testing"):
            gr.Markdown("# Real-time Text-Image Alignment Testing")
            gr.Markdown("Upload **minimum 2 images** and test with text queries to analyze model behavior")
            
            with gr.Row():
                with gr.Column():
                    test_text = gr.Textbox(
                        label="Test Query Text", 
                        placeholder="Enter text like 'red car', 'dog playing', 'modern architecture'",
                        value="red sports car"
                    )
                    test_images = gr.File(
                        file_count="multiple", 
                        file_types=["image"], 
                        label="Upload Images (Min 2 required)"
                    )
                    test_btn = gr.Button("🧠 Test Model Alignment", variant="primary")
                    
                with gr.Column():
                    attention_viz = gr.Image(label="Attention Heatmap", type="pil")
            
            with gr.Row():
                test_results = gr.Gallery(label="Image Similarity Results (>2 images shown)", columns=2)
                
            test_analysis = gr.Markdown(label="Detailed Analysis")
            
            test_btn.click(
                fn=test_text_image_alignment,
                inputs=[test_text, test_images],
                outputs=[test_analysis, test_results, attention_viz]
            )

        # Tab 3: Dataset Management
        with gr.Tab("πŸ“š Dataset Management"):
            gr.Markdown("# Manage Image Index")
            with gr.Row():
                with gr.Column():
                    up = gr.File(file_count="multiple", type="filepath", label="Upload images to index")
                    status = gr.Textbox(label="Index status", interactive=False)
                    build = gr.Button("Build Index")
                    
            with gr.Accordion("Load from HF dataset", open=True):
                repo = gr.Textbox(label="Dataset repo_id", value="imagenet-1k")
                split = gr.Textbox(label="Split", value="validation")
                img_col = gr.Textbox(label="Image column", value="image")
                lim = gr.Number(label="Max images", value=1000, precision=0)
                bsize = gr.Number(label="Batch size", value=64, precision=0)
                build_ds = gr.Button("Build Index from Dataset")
                status_ds = gr.Textbox(label="Index status", interactive=False)

    # Event handlers
    btn.click(fn=search, inputs=[query, topk], outputs=out)
    build.click(fn=upload_and_build, inputs=[up], outputs=status)
    build_ds.click(lambda r,s,c,l,b: build_index_from_dataset(r, s, c, int(l), int(b)), inputs=[repo, split, img_col, lim, bsize], outputs=status_ds)

if __name__ == "__main__":
    # Start indexing in background (if None, UI still starts; indexing happens on first search)
    status_msg = ensure_index()
    demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))