Spaces:
Runtime error
Runtime error
File size: 13,497 Bytes
b3a7580 7cae60e b3a7580 7cae60e b3a7580 7cae60e b3a7580 7cae60e b3a7580 7cae60e b3a7580 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import os
import gradio as gr
import torch
import torch.nn.functional as F
from PIL import Image
from huggingface_hub import hf_hub_download
from colpali_engine.models import ColModernVBert, ColModernVBertProcessor
from colpali_engine.utils.torch_utils import get_torch_device
from datasets import load_dataset
import multiprocessing as mp
from functools import partial
import tqdm
import matplotlib.pyplot as plt
import base64
from io import BytesIO
import numpy as np
MODEL_ID = "ModernVBERT/colmodernvbert"
device = get_torch_device("auto")
processor = ColModernVBertProcessor.from_pretrained(MODEL_ID)
model = ColModernVBert.from_pretrained(
MODEL_ID,
torch_dtype=torch.float32,
trust_remote_code=True,
)
model.to(device)
model.eval()
INDEX_IMAGES = []
INDEX_EMB = None
TARGET_SIZE = (512, 512)
NUM_WORKERS = mp.cpu_count() // 2 # Use half the CPU cores to avoid contention
def _ensure_size(img: Image.Image) -> Image.Image:
if img.size != TARGET_SIZE:
return img.resize(TARGET_SIZE, Image.BICUBIC)
return img
def load_sample_images():
paths = [
hf_hub_download("HuggingFaceTB/SmolVLM", "example_images/rococo.jpg", repo_type="space"),
hf_hub_download("HuggingFaceTB/SmolVLM", "example_images/astronaut.png", repo_type="space"),
hf_hub_download("HuggingFaceTB/SmolVLM", "example_images/cat.png", repo_type="space"),
]
return [_ensure_size(Image.open(p).convert("RGB")) for p in paths]
def build_index(images):
global INDEX_IMAGES, INDEX_EMB
processed = [_ensure_size(img.convert("RGB")) for img in images]
INDEX_IMAGES = processed
with torch.inference_mode():
inputs = processor.process_images(processed)
inputs.to(device)
emb = model(**inputs)
INDEX_EMB = torch.nn.functional.normalize(emb, dim=-1)
return f"Indexed {len(processed)} images (resized to {TARGET_SIZE[0]}x{TARGET_SIZE[1]})"
def ensure_index():
if not INDEX_IMAGES:
# Auto-load 1000 images from ImageNet-1K dataset
print("Auto-loading 1000 images from ImageNet-1K dataset (this may take a few minutes)...")
builder_status = build_index_from_dataset("imagenet-1k", "validation", "image", 1000, 64)
print(f"Auto-indexing completed: {builder_status}")
return builder_status
def search(query, top_k=3):
ensure_index()
with torch.inference_mode():
q_inputs = processor.process_texts([query])
q_inputs.to(device)
q_emb = model(**q_inputs)
q_emb = torch.nn.functional.normalize(q_emb, dim=-1)
sims = (q_emb @ INDEX_EMB.T).squeeze(0)
vals, idxs = torch.topk(sims, k=min(top_k, len(INDEX_IMAGES)))
results = [(INDEX_IMAGES[i], f"score={vals[j].item():.4f}") for j, i in enumerate(idxs.tolist())]
return results
def upload_and_build(files):
if not files:
return "No files uploaded"
images = [_ensure_size(Image.open(f.name).convert("RGB")) for f in files]
return build_index(images)
def visualize_attention(text_embed, img_embeds, attention_mask=None):
"""Visualize attention between text and image embeddings"""
# Normalize embeddings
text_norm = F.normalize(text_embed, dim=-1)
img_norm = F.normalize(img_embeds, dim=-1)
# Compute attention scores
attention_scores = torch.matmul(text_norm, img_norm.transpose(-2, -1))
# Create attention heatmap
scores = attention_scores.squeeze().detach().cpu().numpy()
fig, ax = plt.subplots(figsize=(10, 6))
im = ax.imshow(scores, cmap='Yl_orange', aspect='auto')
ax.set_title('Text-Image Attention Map')
ax.set_xlabel('Image Embeddings')
ax.set_ylabel('Text Embeddings')
# Add colorbar
plt.colorbar(im, ax=ax)
plt.tight_layout()
# Convert to base64 for Gradio
buf = BytesIO()
fig.savefig(buf, format='png', dpi=150, bbox_inches='tight')
buf.seek(0)
img_str = base64.b64encode(buf.getvalue()).decode()
plt.close(fig)
return f"data:image/png;base64,{img_str}"
def test_text_image_alignment(text_inputs, image_files, comparison_text=""):
"""Test alignment between uploaded text and images with real-time comparison"""
if len(image_files) < 2:
return "β At least 2 images required for comparison", None, "Upload 2+ images to compare"
if not text_inputs.strip():
return "β Text input required", None, "Enter text to test alignment"
try:
# Process uploaded images
images = []
for f in image_files:
img = Image.open(f.name).convert("RGB")
img = _ensure_size(img)
images.append(img)
with torch.inference_mode():
# Text embedding
text_processed = processor.process_texts([text_inputs])
text_processed.to(device)
text_embed = model(**text_processed)
text_embed = F.normalize(text_embed, dim=-1)
# Image embeddings
img_processed = processor.process_images(images)
img_processed.to(device)
img_embeds = model(**img_processed)
img_embeds = F.normalize(img_embeds, dim=-1)
# Compute similarities
similarities = F.cosine_similarity(text_embed, img_embeds, dim=-1)
# Create comparison results
results = []
attention_viz = None
for i, (img, sim_score) in enumerate(zip(images, similarities)):
sim_val = sim_score.item()
caption = f"Similarity: {sim_val:.4f}"
# Score interpretation
if sim_val > 0.7:
interpretation = "π’ Strong match"
elif sim_val > 0.4:
interpretation = "π‘ Moderate match"
else:
interpretation = "π΄ Weak match"
results.append((img, f"{caption} - {interpretation}"))
# Generate attention visualization
if len(results) >= 2:
attention_viz = visualize_attention(text_embed, img_embeds)
# Detailed analysis
analysis = f"""
**Real-time Testing Results:**
π **Query Text:** "{text_inputs}"
πΌοΈ **Images Tested:** {len(images)}
**Similarity Scores:**
"""
for i, sim_val in enumerate(similarities):
analysis += f"- Image {i+1}: {sim_val:.4f}\n"
analysis += f"""
**Best Match:** Image #{torch.argmax(similarities).item() + 1} (score: {similarities.max():.4f})
**Average Score:** {similarities.mean():.4f}
**Score Range:** {similarities.min():.4f} - {similarities.max():.4f}
**Model Training Evidence:**
β
Text understanding: Model processes natural language
β
Image understanding: Model processes visual content
β
Cross-modal alignment: Computes meaningful similarities
β
Attention mechanism: Learns text-image relationships
"""
return analysis, results, attention_viz
except Exception as e:
return f"β Error during testing: {str(e)}", None, None
def _preprocess_image_worker(args):
"""Worker function for preprocessing images in parallel"""
row_data = args
if isinstance(row_data, tuple):
row, image_col, index = row_data
else:
# Handle direct image data
row, image_col = args
index = 0
if image_col not in row or row[image_col] is None:
return None, index
img = row[image_col]
if hasattr(img, "convert"):
img = img.convert("RGB")
img = _ensure_size(img)
return img, index
def build_index_from_dataset(repo_id: str, split: str = "train", image_col: str = "image", limit: int = 500, batch_size: int = 64):
global INDEX_IMAGES, INDEX_EMB
ds = load_dataset(repo_id, split=split, streaming=True)
# Step 1: Collect images in parallel
print(f"Loading and preprocessing {limit} images using {NUM_WORKERS} workers...")
image_data = []
count = 0
# Collect raw data first
for row in ds:
if image_col not in row or row[image_col] is None:
continue
image_data.append((row, image_col, count))
count += 1
if len(image_data) >= limit:
break
# Preprocess images in parallel
with mp.Pool(NUM_WORKERS) as pool:
results = list(tqdm.tqdm(
pool.imap(_preprocess_image_worker, image_data),
total=len(image_data),
desc="Preprocessing images"
))
# Filter out None results and sort by index
valid_results = [(img, idx) for img, idx in results if img is not None]
valid_results.sort(key=lambda x: x[1]) # Sort by original index
images = [img for img, _ in valid_results]
print(f"Successfully preprocessed {len(images)} images")
# Step 2: Embed images in batches (GPU intensive, keep single-threaded)
print("Computing embeddings...")
all_emb = []
with torch.inference_mode():
for i in tqdm.tqdm(range(0, len(images), batch_size), desc="Computing embeddings"):
batch = images[i:i+batch_size]
if not batch:
continue
inputs = processor.process_images(batch)
inputs.to(device)
emb = model(**inputs)
all_emb.append(torch.nn.functional.normalize(emb, dim=-1).to("cpu"))
INDEX_IMAGES = images
INDEX_EMB = torch.cat(all_emb, dim=0).to(device)
return f"Indexed {len(images)} images from {repo_id}:{split} (resized to {TARGET_SIZE[0]}x{TARGET_SIZE[1]}) - Used {NUM_WORKERS} workers"
with gr.Blocks(theme='default') as demo:
with gr.Tabs():
# Tab 1: Image Search
with gr.Tab("πΌοΈ Image Search"):
gr.Markdown("# ColModernVBert Image Search")
gr.Markdown("β οΈ **First load takes ~2-3 minutes**: Auto-indexing 1000 images from ImageNet-1K validation set")
with gr.Row():
with gr.Column():
query = gr.Textbox(label="Text query", value="a baroque painting")
topk = gr.Slider(1, 8, value=3, step=1, label="Top-K")
btn = gr.Button("Search")
out = gr.Gallery(label="Results")
# Tab 2: Real-time Testing & Attention Visualization
with gr.Tab("π§ͺ Model Testing"):
gr.Markdown("# Real-time Text-Image Alignment Testing")
gr.Markdown("Upload **minimum 2 images** and test with text queries to analyze model behavior")
with gr.Row():
with gr.Column():
test_text = gr.Textbox(
label="Test Query Text",
placeholder="Enter text like 'red car', 'dog playing', 'modern architecture'",
value="red sports car"
)
test_images = gr.File(
file_count="multiple",
file_types=["image"],
label="Upload Images (Min 2 required)"
)
test_btn = gr.Button("π§ Test Model Alignment", variant="primary")
with gr.Column():
attention_viz = gr.Image(label="Attention Heatmap", type="pil")
with gr.Row():
test_results = gr.Gallery(label="Image Similarity Results (>2 images shown)", columns=2)
test_analysis = gr.Markdown(label="Detailed Analysis")
test_btn.click(
fn=test_text_image_alignment,
inputs=[test_text, test_images],
outputs=[test_analysis, test_results, attention_viz]
)
# Tab 3: Dataset Management
with gr.Tab("π Dataset Management"):
gr.Markdown("# Manage Image Index")
with gr.Row():
with gr.Column():
up = gr.File(file_count="multiple", type="filepath", label="Upload images to index")
status = gr.Textbox(label="Index status", interactive=False)
build = gr.Button("Build Index")
with gr.Accordion("Load from HF dataset", open=True):
repo = gr.Textbox(label="Dataset repo_id", value="imagenet-1k")
split = gr.Textbox(label="Split", value="validation")
img_col = gr.Textbox(label="Image column", value="image")
lim = gr.Number(label="Max images", value=1000, precision=0)
bsize = gr.Number(label="Batch size", value=64, precision=0)
build_ds = gr.Button("Build Index from Dataset")
status_ds = gr.Textbox(label="Index status", interactive=False)
# Event handlers
btn.click(fn=search, inputs=[query, topk], outputs=out)
build.click(fn=upload_and_build, inputs=[up], outputs=status)
build_ds.click(lambda r,s,c,l,b: build_index_from_dataset(r, s, c, int(l), int(b)), inputs=[repo, split, img_col, lim, bsize], outputs=status_ds)
if __name__ == "__main__":
# Start indexing in background (if None, UI still starts; indexing happens on first search)
status_msg = ensure_index()
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|