Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,17 @@
|
|
| 1 |
import os
|
| 2 |
import asyncio
|
| 3 |
-
import copy
|
| 4 |
-
import inspect
|
| 5 |
-
import warnings
|
| 6 |
-
import json
|
| 7 |
import logging
|
|
|
|
| 8 |
from pathlib import Path
|
| 9 |
-
from typing import Any, Literal, Optional, Union, List
|
| 10 |
-
from cryptography.fernet import Fernet
|
| 11 |
from pydantic import BaseModel, Field
|
| 12 |
-
from gradio import Interface, Blocks
|
| 13 |
-
from gradio.components import Component
|
| 14 |
from gradio.data_classes import FileData, GradioModel, GradioRootModel
|
| 15 |
-
from gradio.events import Events
|
| 16 |
-
from gradio.exceptions import Error
|
| 17 |
-
from gradio_client import utils as client_utils
|
| 18 |
from transformers import pipeline
|
| 19 |
from diffusers import DiffusionPipeline
|
| 20 |
import torch
|
| 21 |
import gradio as gr
|
| 22 |
|
| 23 |
-
#
|
| 24 |
image_model = DiffusionPipeline.from_pretrained(
|
| 25 |
"black-forest-labs/FLUX.1-dev",
|
| 26 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
|
@@ -28,7 +19,7 @@ image_model = DiffusionPipeline.from_pretrained(
|
|
| 28 |
)
|
| 29 |
image_model.enable_model_cpu_offload()
|
| 30 |
|
| 31 |
-
# Define data models
|
| 32 |
class FileDataDict(BaseModel):
|
| 33 |
path: str
|
| 34 |
url: Optional[str] = None
|
|
@@ -36,7 +27,6 @@ class FileDataDict(BaseModel):
|
|
| 36 |
orig_name: Optional[str] = None
|
| 37 |
mime_type: Optional[str] = None
|
| 38 |
is_stream: Optional[bool] = False
|
| 39 |
-
|
| 40 |
class Config:
|
| 41 |
arbitrary_types_allowed = True
|
| 42 |
|
|
@@ -45,7 +35,6 @@ class MessageDict(BaseModel):
|
|
| 45 |
role: Literal["user", "assistant", "system"]
|
| 46 |
metadata: Optional[dict] = None
|
| 47 |
options: Optional[List[dict]] = None
|
| 48 |
-
|
| 49 |
class Config:
|
| 50 |
arbitrary_types_allowed = True
|
| 51 |
|
|
@@ -54,7 +43,6 @@ class ChatMessage(GradioModel):
|
|
| 54 |
content: Union[str, FileData, Component]
|
| 55 |
metadata: dict = Field(default_factory=dict)
|
| 56 |
options: Optional[List[dict]] = None
|
| 57 |
-
|
| 58 |
class Config:
|
| 59 |
arbitrary_types_allowed = True
|
| 60 |
|
|
@@ -65,38 +53,35 @@ class ChatbotDataMessages(GradioRootModel):
|
|
| 65 |
class UniversalReasoning:
|
| 66 |
def __init__(self, config):
|
| 67 |
self.config = config
|
| 68 |
-
self.
|
| 69 |
-
self.
|
| 70 |
|
| 71 |
-
# Load models with explicit truncation
|
| 72 |
self.deepseek_model = pipeline(
|
| 73 |
-
"text-classification",
|
| 74 |
model="distilbert-base-uncased-finetuned-sst-2-english",
|
| 75 |
truncation=True
|
| 76 |
-
)
|
| 77 |
|
| 78 |
self.davinci_model = pipeline(
|
| 79 |
-
"text2text-generation",
|
| 80 |
model="t5-small",
|
| 81 |
truncation=True
|
| 82 |
-
)
|
| 83 |
|
| 84 |
self.additional_model = pipeline(
|
| 85 |
-
"text-generation",
|
| 86 |
model="EleutherAI/gpt-neo-125M",
|
| 87 |
truncation=True
|
| 88 |
-
)
|
| 89 |
|
| 90 |
-
# Use earlier-defined image model
|
| 91 |
self.image_model = image_model
|
| 92 |
|
| 93 |
async def generate_response(self, question: str) -> str:
|
| 94 |
-
self.context_history.append(question)
|
| 95 |
sentiment_score = self.analyze_sentiment(question)
|
| 96 |
-
|
| 97 |
deepseek_response = self.deepseek_model(question)
|
| 98 |
-
davinci_response = self.davinci_model(question, max_length=50
|
| 99 |
-
additional_response = self.additional_model(question, max_length=100
|
| 100 |
|
| 101 |
responses = [
|
| 102 |
f"Sentiment score: {sentiment_score}",
|
|
@@ -104,7 +89,6 @@ class UniversalReasoning:
|
|
| 104 |
f"T5 Response: {davinci_response}",
|
| 105 |
f"Additional Model Response: {additional_response}"
|
| 106 |
]
|
| 107 |
-
|
| 108 |
return "\n\n".join(responses)
|
| 109 |
|
| 110 |
def generate_image(self, prompt: str):
|
|
@@ -115,17 +99,17 @@ class UniversalReasoning:
|
|
| 115 |
guidance_scale=3.5,
|
| 116 |
num_inference_steps=50,
|
| 117 |
max_sequence_length=512,
|
| 118 |
-
generator=torch.Generator(
|
| 119 |
).images[0]
|
| 120 |
image.save("flux-dev.png")
|
| 121 |
return image
|
| 122 |
|
| 123 |
def analyze_sentiment(self, text: str) -> list:
|
| 124 |
-
sentiment_score = self.sentiment_analyzer(text)
|
| 125 |
logging.info(f"Sentiment analysis result: {sentiment_score}")
|
| 126 |
return sentiment_score
|
| 127 |
|
| 128 |
-
# Main
|
| 129 |
class MultimodalChatbot(Component):
|
| 130 |
def __init__(
|
| 131 |
self,
|
|
@@ -134,7 +118,6 @@ class MultimodalChatbot(Component):
|
|
| 134 |
render: bool = True,
|
| 135 |
log_file: Optional[Path] = None,
|
| 136 |
):
|
| 137 |
-
# Ensure value is initialized as an empty list if None
|
| 138 |
value = value or []
|
| 139 |
super().__init__(label=label, value=value)
|
| 140 |
self.log_file = log_file
|
|
@@ -143,20 +126,15 @@ class MultimodalChatbot(Component):
|
|
| 143 |
self.universal_reasoning = UniversalReasoning({})
|
| 144 |
|
| 145 |
def preprocess(self, payload: Optional[ChatbotDataMessages]) -> List[MessageDict]:
|
| 146 |
-
|
| 147 |
-
if payload is None:
|
| 148 |
-
return []
|
| 149 |
-
return payload.root
|
| 150 |
|
| 151 |
def postprocess(self, messages: Optional[List[MessageDict]]) -> ChatbotDataMessages:
|
| 152 |
-
# Ensure messages is a valid list
|
| 153 |
messages = messages or []
|
| 154 |
return ChatbotDataMessages(root=messages)
|
| 155 |
|
| 156 |
-
#
|
| 157 |
class HuggingFaceChatbot:
|
| 158 |
def __init__(self):
|
| 159 |
-
# Initialize MultimodalChatbot with a default empty list
|
| 160 |
self.chatbot = MultimodalChatbot(value=[])
|
| 161 |
|
| 162 |
def setup_interface(self):
|
|
@@ -186,7 +164,7 @@ class HuggingFaceChatbot:
|
|
| 186 |
interface = self.setup_interface()
|
| 187 |
interface.launch()
|
| 188 |
|
| 189 |
-
#
|
| 190 |
if __name__ == "__main__":
|
| 191 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 192 |
chatbot = HuggingFaceChatbot()
|
|
|
|
| 1 |
import os
|
| 2 |
import asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import logging
|
| 4 |
+
from typing import Optional, List, Union, Literal
|
| 5 |
from pathlib import Path
|
|
|
|
|
|
|
| 6 |
from pydantic import BaseModel, Field
|
| 7 |
+
from gradio import Interface, Blocks, Component
|
|
|
|
| 8 |
from gradio.data_classes import FileData, GradioModel, GradioRootModel
|
|
|
|
|
|
|
|
|
|
| 9 |
from transformers import pipeline
|
| 10 |
from diffusers import DiffusionPipeline
|
| 11 |
import torch
|
| 12 |
import gradio as gr
|
| 13 |
|
| 14 |
+
# Load gated image model
|
| 15 |
image_model = DiffusionPipeline.from_pretrained(
|
| 16 |
"black-forest-labs/FLUX.1-dev",
|
| 17 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
|
|
|
| 19 |
)
|
| 20 |
image_model.enable_model_cpu_offload()
|
| 21 |
|
| 22 |
+
# Define data models
|
| 23 |
class FileDataDict(BaseModel):
|
| 24 |
path: str
|
| 25 |
url: Optional[str] = None
|
|
|
|
| 27 |
orig_name: Optional[str] = None
|
| 28 |
mime_type: Optional[str] = None
|
| 29 |
is_stream: Optional[bool] = False
|
|
|
|
| 30 |
class Config:
|
| 31 |
arbitrary_types_allowed = True
|
| 32 |
|
|
|
|
| 35 |
role: Literal["user", "assistant", "system"]
|
| 36 |
metadata: Optional[dict] = None
|
| 37 |
options: Optional[List[dict]] = None
|
|
|
|
| 38 |
class Config:
|
| 39 |
arbitrary_types_allowed = True
|
| 40 |
|
|
|
|
| 43 |
content: Union[str, FileData, Component]
|
| 44 |
metadata: dict = Field(default_factory=dict)
|
| 45 |
options: Optional[List[dict]] = None
|
|
|
|
| 46 |
class Config:
|
| 47 |
arbitrary_types_allowed = True
|
| 48 |
|
|
|
|
| 53 |
class UniversalReasoning:
|
| 54 |
def __init__(self, config):
|
| 55 |
self.config = config
|
| 56 |
+
self.context_history = []
|
| 57 |
+
self.sentiment_analyzer = pipeline("sentiment-analysis")
|
| 58 |
|
|
|
|
| 59 |
self.deepseek_model = pipeline(
|
| 60 |
+
"text-classification",
|
| 61 |
model="distilbert-base-uncased-finetuned-sst-2-english",
|
| 62 |
truncation=True
|
| 63 |
+
)
|
| 64 |
|
| 65 |
self.davinci_model = pipeline(
|
| 66 |
+
"text2text-generation",
|
| 67 |
model="t5-small",
|
| 68 |
truncation=True
|
| 69 |
+
)
|
| 70 |
|
| 71 |
self.additional_model = pipeline(
|
| 72 |
+
"text-generation",
|
| 73 |
model="EleutherAI/gpt-neo-125M",
|
| 74 |
truncation=True
|
| 75 |
+
)
|
| 76 |
|
|
|
|
| 77 |
self.image_model = image_model
|
| 78 |
|
| 79 |
async def generate_response(self, question: str) -> str:
|
| 80 |
+
self.context_history.append(question)
|
| 81 |
sentiment_score = self.analyze_sentiment(question)
|
|
|
|
| 82 |
deepseek_response = self.deepseek_model(question)
|
| 83 |
+
davinci_response = self.davinci_model(question, max_length=50)
|
| 84 |
+
additional_response = self.additional_model(question, max_length=100)
|
| 85 |
|
| 86 |
responses = [
|
| 87 |
f"Sentiment score: {sentiment_score}",
|
|
|
|
| 89 |
f"T5 Response: {davinci_response}",
|
| 90 |
f"Additional Model Response: {additional_response}"
|
| 91 |
]
|
|
|
|
| 92 |
return "\n\n".join(responses)
|
| 93 |
|
| 94 |
def generate_image(self, prompt: str):
|
|
|
|
| 99 |
guidance_scale=3.5,
|
| 100 |
num_inference_steps=50,
|
| 101 |
max_sequence_length=512,
|
| 102 |
+
generator=torch.Generator('cpu').manual_seed(0)
|
| 103 |
).images[0]
|
| 104 |
image.save("flux-dev.png")
|
| 105 |
return image
|
| 106 |
|
| 107 |
def analyze_sentiment(self, text: str) -> list:
|
| 108 |
+
sentiment_score = self.sentiment_analyzer(text)
|
| 109 |
logging.info(f"Sentiment analysis result: {sentiment_score}")
|
| 110 |
return sentiment_score
|
| 111 |
|
| 112 |
+
# Main Component
|
| 113 |
class MultimodalChatbot(Component):
|
| 114 |
def __init__(
|
| 115 |
self,
|
|
|
|
| 118 |
render: bool = True,
|
| 119 |
log_file: Optional[Path] = None,
|
| 120 |
):
|
|
|
|
| 121 |
value = value or []
|
| 122 |
super().__init__(label=label, value=value)
|
| 123 |
self.log_file = log_file
|
|
|
|
| 126 |
self.universal_reasoning = UniversalReasoning({})
|
| 127 |
|
| 128 |
def preprocess(self, payload: Optional[ChatbotDataMessages]) -> List[MessageDict]:
|
| 129 |
+
return payload.root if payload else []
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
def postprocess(self, messages: Optional[List[MessageDict]]) -> ChatbotDataMessages:
|
|
|
|
| 132 |
messages = messages or []
|
| 133 |
return ChatbotDataMessages(root=messages)
|
| 134 |
|
| 135 |
+
# Gradio Interface
|
| 136 |
class HuggingFaceChatbot:
|
| 137 |
def __init__(self):
|
|
|
|
| 138 |
self.chatbot = MultimodalChatbot(value=[])
|
| 139 |
|
| 140 |
def setup_interface(self):
|
|
|
|
| 164 |
interface = self.setup_interface()
|
| 165 |
interface.launch()
|
| 166 |
|
| 167 |
+
# Standalone launch
|
| 168 |
if __name__ == "__main__":
|
| 169 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 170 |
chatbot = HuggingFaceChatbot()
|