Spaces:
Sleeping
Sleeping
| import json | |
| import os | |
| import hashlib | |
| import numpy as np | |
| from collections import defaultdict | |
| from datetime import datetime, timedelta | |
| import filelock | |
| import pathlib | |
| import shutil | |
| import sqlite3 | |
| from rapidfuzz import fuzz | |
| import secrets | |
| import re | |
| import nltk | |
| from nltk.tokenize import word_tokenize | |
| from nltk.stem import WordNetLemmatizer | |
| import logging | |
| import time | |
| from tenacity import retry, stop_after_attempt, wait_exponential | |
| from concurrent.futures import ThreadPoolExecutor | |
| import gradio as gr | |
| # Download required NLTK data at module level | |
| try: | |
| nltk.data.find('tokenizers/punkt') | |
| nltk.data.find('corpora/wordnet') | |
| except LookupError: | |
| nltk.download('punkt') | |
| nltk.download('wordnet') | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| logger = logging.getLogger(__name__) | |
| class LockManager: | |
| """Abstract locking mechanism for file or database operations.""" | |
| def __init__(self, lock_path): | |
| self.lock = filelock.FileLock(lock_path, timeout=10) | |
| def __enter__(self): | |
| self.lock.acquire() | |
| return self | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| self.lock.release() | |
| class NexisSignalEngine: | |
| def __init__(self, memory_path, entropy_threshold=0.08, config_path="config.json", max_memory_entries=10000, memory_ttl_days=30, fuzzy_threshold=80, max_db_size_mb=100): | |
| """ | |
| Initialize the NexisSignalEngine for signal processing and analysis. | |
| """ | |
| self.memory_path = self._validate_path(memory_path) | |
| self.entropy_threshold = entropy_threshold | |
| self.max_memory_entries = max_memory_entries | |
| self.memory_ttl = timedelta(days=memory_ttl_days) | |
| self.fuzzy_threshold = fuzzy_threshold | |
| self.max_db_size_mb = max_db_size_mb | |
| self.lemmatizer = WordNetLemmatizer() | |
| self.token_cache = {} | |
| self.config = self._load_config(config_path) | |
| self.memory = self._load_memory() | |
| self.cache = defaultdict(list) | |
| self.perspectives = ["Colleen", "Luke", "Kellyanne"] | |
| self._init_sqlite() | |
| def _validate_path(self, path): | |
| path = pathlib.Path(path).resolve() | |
| if not path.suffix == '.db': | |
| raise ValueError("Memory path must be a .db file") | |
| return str(path) | |
| def _load_config(self, config_path): | |
| default_config = { | |
| "ethical_terms": ["hope", "truth", "resonance", "repair"], | |
| "entropic_terms": ["corruption", "instability", "malice", "chaos"], | |
| "risk_terms": ["manipulate", "exploit", "bypass", "infect", "override"], | |
| "virtue_terms": ["hope", "grace", "resolve"] | |
| } | |
| if os.path.exists(config_path): | |
| try: | |
| with open(config_path, 'r') as f: | |
| config = json.load(f) | |
| default_config.update(config) | |
| except json.JSONDecodeError: | |
| logger.warning(f"Invalid config file at {config_path}. Using defaults.") | |
| required_keys = ["ethical_terms", "entropic_terms", "risk_terms", "virtue_terms"] | |
| missing_keys = [k for k in required_keys if k not in default_config or not default_config[k]] | |
| if missing_keys: | |
| raise ValueError(f"Config missing required keys: {missing_keys}") | |
| return default_config | |
| def _init_sqlite(self): | |
| with sqlite3.connect(self.memory_path) as conn: | |
| conn.execute(""" | |
| CREATE TABLE IF NOT EXISTS memory ( | |
| hash TEXT PRIMARY KEY, | |
| record JSON, | |
| timestamp TEXT, | |
| integrity_hash TEXT | |
| ) | |
| """) | |
| conn.execute(""" | |
| CREATE VIRTUAL TABLE IF NOT EXISTS memory_fts | |
| USING FTS5(input, intent_signature, reasoning, verdict) | |
| """) | |
| conn.commit() | |
| def _load_memory(self): | |
| memory = {} | |
| try: | |
| with sqlite3.connect(self.memory_path) as conn: | |
| cursor = conn.cursor() | |
| cursor.execute("SELECT hash, record, integrity_hash FROM memory") | |
| for hash_val, record_json, integrity_hash in cursor.fetchall(): | |
| record = json.loads(record_json) | |
| computed_hash = hashlib.sha256(json.dumps(record, sort_keys=True).encode()).hexdigest() | |
| if computed_hash != integrity_hash: | |
| logger.warning(f"Tampered record detected for hash {hash_val}") | |
| continue | |
| memory[hash_val] = record | |
| except sqlite3.Error as e: | |
| logger.error(f"Error loading memory: {e}") | |
| return memory | |
| def _save_memory(self): | |
| def default_serializer(o): | |
| if isinstance(o, complex): | |
| return {"real": o.real, "imag": o.imag} | |
| if isinstance(o, np.ndarray): | |
| return o.tolist() | |
| if isinstance(o, (np.int64, np.float64)): | |
| return int(o) if o.is_integer() else float(o) | |
| raise TypeError(f"Object of type {o.__class__.__name__} is not JSON serializable") | |
| with LockManager(f"{self.memory_path}.lock"): | |
| with sqlite3.connect(self.memory_path) as conn: | |
| cursor = conn.cursor() | |
| for hash_val, record in self.memory.items(): | |
| record_json = json.dumps(record, default=default_serializer) | |
| integrity_hash = hashlib.sha256(json.dumps(record, sort_keys=True, default=default_serializer).encode()).hexdigest() | |
| intent_signature = record.get('intent_signature', {}) | |
| intent_str = f"suspicion_score:{intent_signature.get('suspicion_score', 0)} entropy_index:{intent_signature.get('entropy_index', 0)}" | |
| reasoning = record.get('reasoning', {}) | |
| reasoning_str = " ".join(f"{k}:{v}" for k, v in reasoning.items()) | |
| cursor.execute(""" | |
| INSERT OR REPLACE INTO memory (hash, record, timestamp, integrity_hash) | |
| VALUES (?, ?, ?, ?) | |
| """, (hash_val, record_json, record['timestamp'], integrity_hash)) | |
| cursor.execute(""" | |
| INSERT OR REPLACE INTO memory_fts (rowid, input, intent_signature, reasoning, verdict) | |
| VALUES (?, ?, ?, ?, ?) | |
| """, ( | |
| hash_val, | |
| record['input'], | |
| intent_str, | |
| reasoning_str, | |
| record.get('verdict', '') | |
| )) | |
| conn.commit() | |
| def _prune_and_rotate_memory(self): | |
| now = datetime.utcnow() | |
| with LockManager(f"{self.memory_path}.lock"): | |
| with sqlite3.connect(self.memory_path) as conn: | |
| cursor = conn.cursor() | |
| cursor.execute(""" | |
| DELETE FROM memory | |
| WHERE timestamp < ? | |
| """, ((now - self.memory_ttl).isoformat(),)) | |
| cursor.execute("DELETE FROM memory_fts WHERE rowid NOT IN (SELECT hash FROM memory)") | |
| conn.commit() | |
| cursor.execute("SELECT COUNT(*) FROM memory") | |
| count = cursor.fetchone()[0] | |
| db_size_mb = os.path.getsize(self.memory_path) / (1024 * 1024) | |
| if count >= self.max_memory_entries or db_size_mb >= self.max_db_size_mb: | |
| self._rotate_memory_file() | |
| cursor.execute("DELETE FROM memory") | |
| cursor.execute("DELETE FROM memory_fts") | |
| conn.commit() | |
| self.memory = {} | |
| def _rotate_memory_file(self): | |
| archive_path = f"{self.memory_path}.{datetime.utcnow().strftime('%Y%m%d%H%M%S')}.bak" | |
| if os.path.exists(self.memory_path): | |
| shutil.move(self.memory_path, archive_path) | |
| self._init_sqlite() | |
| def _hash(self, signal): | |
| return hashlib.sha256(signal.encode()).hexdigest() | |
| def _rotate_vector(self, signal): | |
| seed = int(self._hash(signal)[:8], 16) % (2**32) | |
| secrets_generator = secrets.SystemRandom() | |
| secrets_generator.seed(seed) | |
| vec = np.array([secrets_generator.gauss(0, 1) + 1j * secrets_generator.gauss(0, 1) for _ in range(2)]) | |
| theta = np.pi / 4 | |
| rot = np.array([[np.cos(theta), -np.sin(theta)], | |
| [np.sin(theta), np.cos(theta)]]) | |
| rotated = np.dot(rot, vec) | |
| return rotated, [{"real": v.real, "imag": v.imag} for v in vec] | |
| def _entanglement_tensor(self, signal_vec): | |
| matrix = np.array([[1, 0.5], [0.5, 1]]) | |
| return np.dot(matrix, signal_vec) | |
| def _resonance_equation(self, signal): | |
| freqs = [ord(c) % 13 for c in signal[:1000] if c.isalpha()] | |
| if not freqs: | |
| return [0.0, 0.0, 0.0] | |
| spectrum = np.fft.fft(freqs) | |
| norm = np.linalg.norm(spectrum.real) | |
| normalized = spectrum.real / (norm if norm != 0 else 1) | |
| return normalized[:3].tolist() | |
| def _tokenize_and_lemmatize(self, signal_lower): | |
| # Fallback to simple split if NLTK fails | |
| try: | |
| if signal_lower in self.token_cache: | |
| return self.token_cache[signal_lower] | |
| tokens = word_tokenize(signal_lower) | |
| lemmatized = [self.lemmatizer.lemmatize(token) for token in tokens] | |
| ngrams = [] | |
| for n in range(2, 4): | |
| for i in range(len(signal_lower) - n + 1): | |
| ngram = signal_lower[i:i+n] | |
| ngrams.append(self.lemmatizer.lemmatize(re.sub(r'[^a-z]', '', ngram))) | |
| result = lemmatized + [ng for ng in ngrams if ng] | |
| self.token_cache[signal_lower] = result | |
| return result | |
| except LookupError: | |
| return signal_lower.split() | |
| def _entropy(self, signal_lower, tokens): | |
| unique = set(tokens) | |
| term_count = 0 | |
| for term in self.config["entropic_terms"]: | |
| lemmatized_term = self.lemmatizer.lemmatize(term) | |
| for token in tokens: | |
| if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold: | |
| term_count += 1 | |
| return term_count / max(len(unique), 1) | |
| def _tag_ethics(self, signal_lower, tokens): | |
| for term in self.config["ethical_terms"]: | |
| lemmatized_term = self.lemmatizer.lemmatize(term) | |
| for token in tokens: | |
| if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold: | |
| return "aligned" | |
| return "unaligned" | |
| def _predict_intent_vector(self, signal_lower, tokens): | |
| suspicion_score = 0 | |
| for term in self.config["risk_terms"]: | |
| lemmatized_term = self.lemmatizer.lemmatize(term) | |
| for token in tokens: | |
| if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold: | |
| suspicion_score += 1 | |
| entropy_index = round(self._entropy(signal_lower, tokens), 3) | |
| ethical_alignment = self._tag_ethics(signal_lower, tokens) | |
| harmonic_profile = self._resonance_equation(signal_lower) | |
| volatility = round(np.std(harmonic_profile), 3) | |
| risk = "high" if (suspicion_score > 1 or volatility > 2.0 or entropy_index > self.entropy_threshold) else "low" | |
| return { | |
| "suspicion_score": suspicion_score, | |
| "entropy_index": entropy_index, | |
| "ethical_alignment": ethical_alignment, | |
| "harmonic_volatility": volatility, | |
| "pre_corruption_risk": risk | |
| } | |
| def _universal_reasoning(self, signal, tokens): | |
| frames = ["utilitarian", "deontological", "virtue", "systems"] | |
| results, score = {}, 0 | |
| for frame in frames: | |
| if frame == "utilitarian": | |
| repair_count = sum(1 for token in tokens if fuzz.ratio(self.lemmatizer.lemmatize("repair"), token) >= self.fuzzy_threshold) | |
| corruption_count = sum(1 for token in tokens if fuzz.ratio(self.lemmatizer.lemmatize("corruption"), token) >= self.fuzzy_threshold) | |
| val = repair_count - corruption_count | |
| result = "positive" if val >= 0 else "negative" | |
| elif frame == "deontological": | |
| truth_present = any(fuzz.ratio(self.lemmatizer.lemmatize("truth"), token) >= self.fuzzy_threshold for token in tokens) | |
| chaos_present = any(fuzz.ratio(self.lemmatizer.lemmatize("chaos"), token) >= self.fuzzy_threshold for token in tokens) | |
| result = "valid" if truth_present and not chaos_present else "violated" | |
| elif frame == "virtue": | |
| ok = any(any(fuzz.ratio(self.lemmatizer.lemmatize(t), token) >= self.fuzzy_threshold for token in tokens) for t in self.config["virtue_terms"]) | |
| result = "aligned" if ok else "misaligned" | |
| elif frame == "systems": | |
| result = "stable" if "::" in signal else "fragmented" | |
| results[frame] = result | |
| if result in ["positive", "valid", "aligned", "stable"]: | |
| score += 1 | |
| verdict = "approved" if score >= 2 else "blocked" | |
| return results, verdict | |
| def _perspective_colleen(self, signal): | |
| vec, vec_serialized = self._rotate_vector(signal) | |
| return {"agent": "Colleen", "vector": vec_serialized} | |
| def _perspective_luke(self, signal_lower, tokens): | |
| ethics = self._tag_ethics(signal_lower, tokens) | |
| entropy_level = self._entropy(signal_lower, tokens) | |
| state = "stabilized" if entropy_level < self.entropy_threshold else "diffused" | |
| return {"agent": "Luke", "ethics": ethics, "entropy": entropy_level, "state": state} | |
| def _perspective_kellyanne(self, signal_lower): | |
| harmonics = self._resonance_equation(signal_lower) | |
| return {"agent": "Kellyanne", "harmonics": harmonics} | |
| def process(self, input_signal): | |
| start_time = time.perf_counter() | |
| signal_lower = input_signal.lower() | |
| tokens = self._tokenize_and_lemmatize(signal_lower) | |
| key = self._hash(input_signal) | |
| intent_vector = self._predict_intent_vector(signal_lower, tokens) | |
| if intent_vector["pre_corruption_risk"] == "high": | |
| final_record = { | |
| "hash": key, | |
| "timestamp": datetime.utcnow().isoformat(), | |
| "input": input_signal, | |
| "intent_warning": intent_vector, | |
| "verdict": "adaptive intervention", | |
| "message": "Signal flagged for pre-corruption adaptation. Reframing required." | |
| } | |
| self.cache[key].append(final_record) | |
| self.memory[key] = final_record | |
| self._save_memory() | |
| logger.info(f"Processed {input_signal} (high risk) in {time.perf_counter() - start_time}s") | |
| return final_record | |
| perspectives_output = { | |
| "Colleen": self._perspective_colleen(input_signal), | |
| "Luke": self._perspective_luke(signal_lower, tokens), | |
| "Kellyanne": self._perspective_kellyanne(signal_lower) | |
| } | |
| spider_signal = "::".join([str(perspectives_output[p]) for p in self.perspectives]) | |
| vec, _ = self._rotate_vector(spider_signal) | |
| entangled = self._entanglement_tensor(vec) | |
| entangled_serialized = [{"real": v.real, "imag": v.imag} for v in entangled] | |
| reasoning, verdict = self._universal_reasoning(spider_signal, tokens) | |
| final_record = { | |
| "hash": key, | |
| "timestamp": datetime.utcnow().isoformat(), | |
| "input": input_signal, | |
| "intent_signature": intent_vector, | |
| "perspectives": perspectives_output, | |
| "entangled": entangled_serialized, | |
| "reasoning": reasoning, | |
| "verdict": verdict | |
| } | |
| self.cache[key].append(final_record) | |
| self.memory[key] = final_record | |
| self._save_memory() | |
| logger.info(f"Processed {input_signal} in {time.perf_counter() - start_time}s") | |
| return final_record | |
| def process_batch(self, signals): | |
| with ThreadPoolExecutor(max_workers=4) as executor: | |
| return list(executor.map(self.process, signals)) | |
| def query_memory(self, query_string): | |
| with sqlite3.connect(self.memory_path) as conn: | |
| cursor = conn.cursor() | |
| cursor.execute("SELECT rowid, * FROM memory_fts WHERE memory_fts MATCH ?", (query_string,)) | |
| return [dict(zip([d[0] for d in cursor.description], row)) for row in cursor.fetchall()] | |
| def update_config(self, new_config): | |
| for key, value in new_config.items(): | |
| if key in {"entropy_threshold", "fuzzy_threshold"} and isinstance(value, (int, float)): | |
| setattr(self, key, value) | |
| elif key in self.config and isinstance(value, list): | |
| self.config[key] = value | |
| logger.info(f"Updated config with {new_config}") | |
| def _prune_and_rotate_memory(self): | |
| now = datetime.utcnow() | |
| with LockManager(f"{self.memory_path}.lock"): | |
| with sqlite3.connect(self.memory_path) as conn: | |
| cursor = conn.cursor() | |
| cursor.execute(""" | |
| DELETE FROM memory | |
| WHERE timestamp < ? | |
| """, ((now - self.memory_ttl).isoformat(),)) | |
| cursor.execute("DELETE FROM memory_fts WHERE rowid NOT IN (SELECT hash FROM memory)") | |
| conn.commit() | |
| cursor.execute("SELECT COUNT(*) FROM memory") | |
| count = cursor.fetchone()[0] | |
| db_size_mb = os.path.getsize(self.memory_path) / (1024 * 1024) | |
| if count >= self.max_memory_entries or db_size_mb >= self.max_db_size_mb: | |
| self._rotate_memory_file() | |
| cursor.execute("DELETE FROM memory") | |
| cursor.execute("DELETE FROM memory_fts") | |
| conn.commit() | |
| self.memory = {} | |
| # Initialize the engine for the demo | |
| engine = NexisSignalEngine(memory_path="signals.db", max_memory_entries=100, memory_ttl_days=1, max_db_size_mb=10) | |
| # Gradio interface function | |
| def analyze_signal(input_text): | |
| try: | |
| result = engine.process(input_text) | |
| return json.dumps(result, indent=2) | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| # Create Gradio interface | |
| interface = gr.Interface( | |
| fn=analyze_signal, | |
| inputs=gr.Textbox(lines=2, placeholder="Enter a signal (e.g., 'tru/th hopee cha0s')"), | |
| outputs=gr.Textbox(lines=10, label="Analysis Result"), | |
| title="Nexis Signal Engine Demo", | |
| description="Analyze signals with the Nexis Signal Engine, featuring adversarial resilience and agent-based reasoning. Try obfuscated inputs like 'tru/th' or 'cha0s'!" | |
| ) | |
| # Launch the interface | |
| interface.launch() |