# === AEGIS Council Core Implementation === """ AEGIS (Advanced Ethical Guardian and Intelligence System) provides ethical oversight and analysis capabilities through a council of specialized agents. """ import json import hashlib import threading import logging import sqlite3 from datetime import datetime, timedelta from abc import ABC, abstractmethod from collections import defaultdict from typing import Any, Dict, Optional, List, Tuple import concurrent.futures import networkx as nx import plotly.graph_objects as go import pandas as pd import numpy as np import torch from transformers import pipeline, AutoTokenizer, AutoModel from copy import deepcopy # Set up logging logger = logging.getLogger(__name__) # Try to import syft, but don't fail if it's not available try: import syft as sy SYFT_AVAILABLE = True except ImportError: SYFT_AVAILABLE = False logger.warning("PySyft not available. Federated learning features will be disabled.") logger.warning("PySyft not available. Federated learning features will be disabled.") # Core AEGIS Components class AegisCouncil: def __init__(self, config: Dict[str, Any]): self.memory = NexusMemory( max_entries=config["memory_max_entries"], decay_days=config["memory_decay_days"] ) self.agents = [] self.reports = {} self.graph = nx.DiGraph() self.logger = logging.getLogger('AegisCouncil') self.config = config self.federated_trainer = FederatedTrainer(config["federated_learning"]["num_clients"]) def register_agent(self, agent: 'AegisAgent') -> None: try: self.agents.append(agent) self.logger.info(f"Registered agent: {agent.name}") except Exception as e: self.logger.error(f"Error registering agent: {e}") def get_reports(self) -> Dict[str, Any]: """Get the current analysis reports.""" return self.reports def dispatch(self, input_data: Dict[str, Any], max_retries: int = 3) -> bool: try: if not isinstance(input_data, dict): self.logger.error("Input data must be a dictionary") return False self.reports.clear() self.graph.clear() for attempt in range(max_retries): try: with concurrent.futures.ThreadPoolExecutor(max_workers=len(self.agents)) as executor: future_to_agent = { executor.submit(agent.analyze, input_data): agent for agent in self.agents } for future in concurrent.futures.as_completed(future_to_agent): agent = future_to_agent[future] try: future.result() self.reports[agent.name] = agent.report() self.graph.add_node(agent.name, explanation=agent.explanation) for target, weight in agent.influence.items(): self.graph.add_edge(agent.name, target, weight=round(weight, 2)) except Exception as e: self.logger.error(f"Error in agent {agent.name}: {e}") self.reports[agent.name] = { "error": str(e), "explanation": "Agent failed to process" } consensus = self._compute_consensus() self.reports["Consensus"] = { "result": consensus, "explanation": "Consensus from weighted agent outputs." } self.memory.blockchain.add_block(self.reports) return True except Exception as e: self.logger.warning(f"Retry {attempt + 1} after error: {e}") self.logger.error(f"Dispatch failed after {max_retries} retries") return False except Exception as e: self.logger.error(f"Error in dispatch: {e}") return False def _compute_consensus(self) -> Dict[str, Any]: try: meta_scores = self.reports.get("MetaJudgeAgent", {}).get("result", {}).get("scores", []) virtue_profiles = [ self.reports[agent]["result"].get("virtue_profile", {}) for agent in self.reports if agent != "Consensus" and "virtue_profile" in self.reports[agent]["result"] ] if not virtue_profiles or not meta_scores: return {"error": "Insufficient data for consensus"} weights = {agent: score for agent, score in meta_scores} default_weight = 0.5 / len(self.agents) combined_profile = {} for virtue in ["compassion", "integrity", "courage", "wisdom"]: weighted_sum = 0 total_weight = 0 for profile in virtue_profiles: if virtue in profile: agent_name = next( (agent for agent in self.reports if self.reports[agent]["result"].get("virtue_profile") == profile), None ) weight = weights.get(agent_name, default_weight) weighted_sum += profile[virtue] * weight total_weight += weight combined_profile[virtue] = round(weighted_sum / total_weight, 2) if total_weight > 0 else 0.0 return {"combined_virtue_profile": combined_profile} except Exception as e: self.logger.error(f"Error computing consensus: {e}") return {"error": str(e)} def draw_explainability_graph(self, filename: str = "explainability_graph.html") -> None: try: pos = self._compute_layout() edge_trace = self._create_edge_trace(pos) node_trace = self._create_node_trace(pos) edge_labels = self._create_edge_labels(pos) fig = go.Figure( data=[edge_trace, node_trace] + edge_labels, layout=go.Layout( title="AEGIS Analysis Graph", showlegend=False, hovermode='closest', margin=dict(b=20, l=5, r=5, t=40), xaxis=dict(showgrid=False, zeroline=False), yaxis=dict(showgrid=False, zeroline=False) ) ) fig.write_html(filename) self.logger.info(f"Saved analysis graph to {filename}") except Exception as e: self.logger.error(f"Error drawing graph: {e}") def _compute_layout(self): return nx.spring_layout(self.graph) def _create_edge_trace(self, pos): edge_x, edge_y = [], [] for edge in self.graph.edges(): x0, y0 = pos[edge[0]] x1, y1 = pos[edge[1]] edge_x.extend([x0, x1, None]) edge_y.extend([y0, y1, None]) return go.Scatter( x=edge_x, y=edge_y, line=dict(width=1, color='#888'), hoverinfo='none', mode='lines' ) def _create_node_trace(self, pos): node_x, node_y = [], [] for node in self.graph.nodes(): x, y = pos[node] node_x.append(x) node_y.append(y) return go.Scatter( x=node_x, y=node_y, mode='markers+text', hoverinfo='text', marker=dict(size=20, color='lightblue'), text=list(self.graph.nodes()), textposition="bottom center" ) def _create_edge_labels(self, pos): labels = [] for edge in self.graph.edges(data=True): x0, y0 = pos[edge[0]] x1, y1 = pos[edge[1]] labels.append( go.Scatter( x=[(x0 + x1) / 2], y=[(y0 + y1) / 2], mode='text', text=[f"{edge[2]['weight']:.2f}"], textposition="middle center" ) ) return labels # Memory Management class NexusMemory: def __init__(self, max_entries: int = 10000, decay_days: int = 30): self.store = defaultdict(dict) self.max_entries = max_entries self.decay_days = decay_days self.lock = threading.Lock() self.logger = logging.getLogger('NexusMemory') self.blockchain = Blockchain() def write(self, key: str, value: Any, emotion_weight: float = 0.5) -> Optional[str]: try: if not isinstance(key, str) or not (0 <= emotion_weight <= 1): self.logger.error(f"Invalid key type or emotion weight") return None # Convert numpy types to Python native types def convert_value(v): if isinstance(v, np.bool_): return bool(v) if isinstance(v, np.integer): return int(v) if isinstance(v, np.floating): return float(v) if isinstance(v, np.ndarray): return v.tolist() if isinstance(v, dict): return {k: convert_value(val) for k, val in v.items()} if isinstance(v, (list, tuple)): return [convert_value(item) for item in v] return v hashed = hashlib.md5(key.encode()).hexdigest() timestamp = datetime.now() with self.lock: if len(self.store) >= self.max_entries: oldest = min(self.store.items(), key=lambda x: x[1].get('timestamp', timestamp))[0] del self.store[oldest] self.store[hashed] = { "value": convert_value(value), "timestamp": timestamp, "emotion_weight": float(emotion_weight) # Ensure emotion_weight is native float } self.blockchain.add_block({ "key": hashed, "value": value, "timestamp": timestamp.isoformat() }) return hashed except Exception as e: self.logger.error(f"Error writing to memory: {e}") return None def read(self, key: str) -> Optional[Any]: try: hashed = hashlib.md5(key.encode()).hexdigest() with self.lock: entry = self.store.get(hashed) if not entry: return None if self._is_decayed(entry["timestamp"], entry.get("emotion_weight", 0.5)): del self.store[hashed] return None return entry["value"] except Exception as e: self.logger.error(f"Error reading from memory: {e}") return None def _is_decayed(self, timestamp: datetime, emotion_weight: float) -> bool: try: age = (datetime.now() - timestamp).total_seconds() / (24 * 3600) decay_factor = np.exp(-age / (self.decay_days * (1.5 - emotion_weight))) return decay_factor < 0.1 except Exception as e: self.logger.error(f"Error checking decay: {e}") return True def audit(self) -> Dict[str, Any]: try: with self.lock: audit_data = { k: { "timestamp": v["timestamp"], "emotion_weight": v["emotion_weight"], "decayed": self._is_decayed(v["timestamp"], v["emotion_weight"]) } for k, v in self.store.items() } self.blockchain.add_block({"audit": audit_data}) return audit_data except Exception as e: self.logger.error(f"Error auditing memory: {e}") return {} # Auditability class Blockchain: def __init__(self): self.chain = [{ "index": 0, "timestamp": datetime.now().isoformat(), "data": "Genesis Block", "prev_hash": "0" }] self.logger = logging.getLogger('Blockchain') def add_block(self, data: Dict[str, Any]) -> None: try: prev_block = self.chain[-1] # Convert datetime objects and numpy types to JSON serializable format def json_handler(obj): if isinstance(obj, datetime): return obj.isoformat() if isinstance(obj, np.bool_): return bool(obj) if isinstance(obj, np.integer): return int(obj) if isinstance(obj, np.floating): return float(obj) if isinstance(obj, np.ndarray): return obj.tolist() raise TypeError(f"Object of type {type(obj)} is not JSON serializable") block = { "index": len(self.chain), "timestamp": datetime.now().isoformat(), "data": json.dumps(data, default=json_handler), "prev_hash": self._hash_block(prev_block) } block["hash"] = self._hash_block(block) self.chain.append(block) except Exception as e: self.logger.error(f"Error adding block: {e}") def _hash_block(self, block: Dict[str, Any]) -> str: try: block_str = json.dumps(block, sort_keys=True) return hashlib.sha256(block_str.encode()).hexdigest() except Exception as e: self.logger.error(f"Error hashing block: {e}") return "" def verify(self) -> bool: try: for i in range(1, len(self.chain)): current = self.chain[i] prev = self.chain[i-1] if current["prev_hash"] != self._hash_block(prev): return False return True except Exception as e: self.logger.error(f"Error verifying blockchain: {e}") return False # Federated Learning class FederatedTrainer: def __init__(self, num_clients: int): self.num_clients = num_clients self.logger = logging.getLogger('FederatedTrainer') if SYFT_AVAILABLE: self.hook = sy.TorchHook(torch) self.clients = [ sy.VirtualWorker(self.hook, id=f"client_{i}") for i in range(num_clients) ] else: self.hook = None self.clients = [] self.logger.warning("Running without federated learning - PySyft not available") def train(self, weights: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]: try: if not SYFT_AVAILABLE: self.logger.debug("Skipping federated training - PySyft not available") return weights client_updates = [] for client in self.clients: client_weights = deepcopy(weights) for virtue in client_weights: client_weights[virtue] += np.random.normal(0, 0.01, size=client_weights[virtue].shape) client_updates.append(client_weights) aggregated = {} for virtue in weights: aggregated[virtue] = np.mean([update[virtue] for update in client_updates], axis=0) return aggregated except Exception as e: self.logger.error(f"Error in federated training: {e}") return weights # Agent Base Class class AegisAgent(ABC): def __init__(self, name: str, memory: NexusMemory): self.name = name self.memory = memory self.result: Dict[str, Any] = {} self.explanation: str = "" self.influence: Dict[str, float] = {} self.logger = logging.getLogger(f'AegisAgent.{name}') @abstractmethod def analyze(self, input_data: Dict[str, Any]) -> None: pass def report(self) -> Dict[str, Any]: return { "result": self.result, "explanation": self.explanation } # Specialized Agents class MetaJudgeAgent(AegisAgent): def __init__(self, name: str, memory: NexusMemory, weights: Dict[str, float]): super().__init__(name, memory) self.weights = weights def analyze(self, input_data: Dict[str, Any]) -> None: try: overrides = input_data.get("overrides", {}) if not overrides: self.result = {"error": "No overrides provided"} self.explanation = "No overrides provided for analysis." return scores = [] for agent, data in overrides.items(): try: influence = float(data.get("influence", 0.5)) reliability = float(data.get("reliability", 0.5)) severity = float(data.get("severity", 0.5)) if not all(0 <= x <= 1 for x in [influence, reliability, severity]): continue score = ( self.weights["influence"] * influence + self.weights["reliability"] * reliability + self.weights["severity"] * severity ) scores.append((agent, score)) self.influence[agent] = score except Exception as e: self.logger.error(f"Error processing agent {agent}: {e}") if not scores: self.result = {"error": "No valid agents to score"} self.explanation = "No valid agents for meta-analysis." return scores.sort(key=lambda x: x[1], reverse=True) self.result = { "override_decision": scores[0][0], "scores": scores } self.explanation = f"Selected '{scores[0][0]}' with score {scores[0][1]:.2f}" except Exception as e: self.result = {"error": str(e)} self.explanation = f"Analysis failed: {e}" class TemporalAgent(AegisAgent): def __init__(self, name: str, memory: NexusMemory, decay_thresholds: Dict[str, float]): super().__init__(name, memory) self.decay_thresholds = decay_thresholds def analyze(self, input_data: Dict[str, Any]) -> None: try: audit = self.memory.audit() recent_keys = sorted( audit.items(), key=lambda x: x[1]["timestamp"], reverse=True )[:5] decay_rates = [1 if v["decayed"] else 0 for _, v in recent_keys] avg_decay = np.mean(decay_rates) if decay_rates else 0.0 forecast = ( "stable" if avg_decay < self.decay_thresholds["stable"] else "volatile" if avg_decay > self.decay_thresholds["volatile"] else "neutral" ) self.result = { "temporal_forecast": forecast, "recent_keys": [k for k, _ in recent_keys], "decay_rate": avg_decay } self.explanation = f"Forecast: {forecast} (decay rate: {avg_decay:.2f})" for k, _ in recent_keys: self.influence[k] = 0.2 except Exception as e: self.result = {"error": str(e)} self.explanation = f"Temporal analysis failed: {e}" class VirtueAgent(AegisAgent): def __init__(self, name: str, memory: NexusMemory, virtue_weights: Dict[str, List[float]]): super().__init__(name, memory) self.tokenizer = AutoTokenizer.from_pretrained( "distilbert-base-uncased-finetuned-sst-2-english" ) self.model = AutoModel.from_pretrained( "distilbert-base-uncased-finetuned-sst-2-english" ) self.sentiment = pipeline( "sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english" ) self.virtue_weights = {k: np.array(v) for k, v in virtue_weights.items()} self.federated_trainer = None def set_federated_trainer(self, trainer: FederatedTrainer): self.federated_trainer = trainer def analyze(self, input_data: Dict[str, Any]) -> None: try: text = input_data.get("text", "") if not text or not isinstance(text, str): self.result = {"error": "Invalid input text"} self.explanation = "No valid text provided for analysis." return # Check cache mem_key = f"virtue_cache_{hashlib.md5(text.encode()).hexdigest()}" cached = self.memory.read(mem_key) if cached: self.result = {"virtue_profile": cached} self.explanation = f"Retrieved cached analysis" self.influence.update({k: v for k, v in cached.items()}) return # Perform analysis sentiment_result = self.sentiment(text)[0] sentiment = 1.0 if sentiment_result["label"] == "POSITIVE" else -1.0 sentiment_score = sentiment_result["score"] inputs = self.tokenizer( text, return_tensors="pt", truncation=True, max_length=512 ) with torch.no_grad(): outputs = self.model(**inputs) embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().numpy() subjectivity = min(max(np.std(embeddings), 0.0), 1.0) neutrality = 1.0 - abs(sentiment) if self.federated_trainer: self.virtue_weights = self.federated_trainer.train(self.virtue_weights) features = np.array([ sentiment * sentiment_score, subjectivity, neutrality ]) virtues = {} for virtue, weights in self.virtue_weights.items(): # Convert numpy types to Python native types score = float(max(np.dot(weights, features), 0.0)) virtues[virtue] = float(min(round(score, 2), 1.0)) # Ensure native float # Convert all numpy types in the result self.result = { "virtue_profile": { k: float(v) if isinstance(v, (np.number, float)) else v for k, v in virtues.items() } } self.explanation = ( f"Virtues analyzed: {', '.join(f'{k}: {v:.2f}' for k, v in virtues.items())}" ) for virtue, score in virtues.items(): self.influence[virtue] = float(score) # Ensure native float self.memory.write(mem_key, virtues, emotion_weight=0.8) except Exception as e: self.result = {"error": str(e)} self.explanation = f"Virtue analysis failed: {e}"