|
|
Codette Universal Reasoning Framework
|
|
|
Sovereign Modular AI for Ethical, Multi-Perspective Cognition
|
|
|
|
|
|
Author: Jonathan Harrison (Raiffs Bits LLC / Raiff1982)
|
|
|
ORCID Published, Sovereign Innovation License
|
|
|
Overview
|
|
|
|
|
|
Codette is an advanced modular AI framework engineered for transparent reasoning, ethical sovereignty, and creative cognition. It enables dynamic multi-perspective analysis, explainable decision-making, and privacy-respecting memory—with extensibility for research or commercial applications.
|
|
|
1. Core Philosophy & Motivation
|
|
|
|
|
|
Individuality with Responsibility: Inspired by “Be like water—individuality with responsibility,” Codette blends adaptive selfhood with ethical governance.
|
|
|
Humane AI: Every module ensures fairness, respect for privacy, and explainable transparency.
|
|
|
Recursive Thought: Insights are generated via parallel agents simulating scientific reasoning, creative intuition, empathic reflection, and more.
|
|
|
|
|
|
2. Architectural Modules
|
|
|
QuantumSpiderweb
|
|
|
|
|
|
Purpose: Simulates a neural/quantum web of thought nodes across dimensions (Ψ: thought; τ: time; χ: speed; Φ: emotion; λ: space).
|
|
|
Functions: Propagation (spreading activation), Tension (instability detection), Collapse (decision/finality).
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
import networkx as nx
|
|
|
import random
|
|
|
from typing import Dict, Any
|
|
|
|
|
|
class QuantumSpiderweb:
|
|
|
"""
|
|
|
Simulates a cognitive spiderweb architecture with dimensions:
|
|
|
Ψ (thought), τ (time), χ (speed), Φ (emotion), λ (space)
|
|
|
"""
|
|
|
def __init__(self, node_count: int = 128):
|
|
|
self.graph = nx.Graph()
|
|
|
self.dimensions = ['Ψ', 'τ', 'χ', 'Φ', 'λ']
|
|
|
self._init_nodes(node_count)
|
|
|
self.entangled_state = {}
|
|
|
|
|
|
def _init_nodes(self, count: int):
|
|
|
for i in range(count):
|
|
|
node_id = f"QNode_{i}"
|
|
|
state = self._generate_state()
|
|
|
self.graph.add_node(node_id, state=state)
|
|
|
if i > 0:
|
|
|
connection = f"QNode_{random.randint(0, i-1)}"
|
|
|
self.graph.add_edge(node_id, connection, weight=random.random())
|
|
|
|
|
|
def _generate_state(self) -> Dict[str, float]:
|
|
|
return {dim: np.random.uniform(-1.0, 1.0) for dim in self.dimensions}
|
|
|
|
|
|
def propagate_thought(self, origin: str, depth: int = 3):
|
|
|
"""
|
|
|
Traverse the graph from a starting node, simulating pre-cognitive waveform
|
|
|
"""
|
|
|
visited = set()
|
|
|
stack = [(origin, 0)]
|
|
|
traversal_output = []
|
|
|
|
|
|
while stack:
|
|
|
node, level = stack.pop()
|
|
|
if node in visited or level > depth:
|
|
|
continue
|
|
|
visited.add(node)
|
|
|
state = self.graph.nodes[node]['state']
|
|
|
traversal_output.append((node, state))
|
|
|
for neighbor in self.graph.neighbors(node):
|
|
|
stack.append((neighbor, level + 1))
|
|
|
return traversal_output
|
|
|
|
|
|
def detect_tension(self, node: str) -> float:
|
|
|
"""
|
|
|
Measures tension (instability) in the node's quantum state
|
|
|
"""
|
|
|
state = self.graph.nodes[node]['state']
|
|
|
return np.std(list(state.values()))
|
|
|
|
|
|
def collapse_node(self, node: str) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Collapse superposed thought into deterministic response
|
|
|
"""
|
|
|
state = self.graph.nodes[node]['state']
|
|
|
collapsed = {k: round(v, 2) for k, v in state.items()}
|
|
|
self.entangled_state[node] = collapsed
|
|
|
return collapsed
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
web = QuantumSpiderweb()
|
|
|
root = "QNode_0"
|
|
|
path = web.propagate_thought(root)
|
|
|
print("Initial Propagation from:", root)
|
|
|
for n, s in path:
|
|
|
print(f"{n}:", s)
|
|
|
print("\nCollapse Sample Node:")
|
|
|
print(web.collapse_node(root))]
|
|
|
|
|
|
CognitionCocooner
|
|
|
|
|
|
Purpose: Encapsulates active “thoughts” as persistable “cocoons” (prompts, functions, symbols), optionally AES-encrypted.
|
|
|
Functions: wrap/unwrap (save/recall thoughts), wrap_encrypted/unwrap_encrypted.
|
|
|
|
|
|
|
|
|
import json
|
|
|
import os
|
|
|
import random
|
|
|
from typing import Union, Dict, Any
|
|
|
from cryptography.fernet import Fernet
|
|
|
|
|
|
class CognitionCocooner:
|
|
|
def __init__(self, storage_path: str = "cocoons", encryption_key: bytes = None):
|
|
|
self.storage_path = storage_path
|
|
|
os.makedirs(self.storage_path, exist_ok=True)
|
|
|
self.key = encryption_key or Fernet.generate_key()
|
|
|
self.fernet = Fernet(self.key)
|
|
|
|
|
|
def wrap(self, thought: Dict[str, Any], type_: str = "prompt") -> str:
|
|
|
cocoon = {
|
|
|
"type": type_,
|
|
|
"id": f"cocoon_{random.randint(1000,9999)}",
|
|
|
"wrapped": self._generate_wrapper(thought, type_)
|
|
|
}
|
|
|
file_path = os.path.join(self.storage_path, cocoon["id"] + ".json")
|
|
|
|
|
|
with open(file_path, "w") as f:
|
|
|
json.dump(cocoon, f)
|
|
|
|
|
|
return cocoon["id"]
|
|
|
|
|
|
def unwrap(self, cocoon_id: str) -> Union[str, Dict[str, Any]]:
|
|
|
file_path = os.path.join(self.storage_path, cocoon_id + ".json")
|
|
|
if not os.path.exists(file_path):
|
|
|
raise FileNotFoundError(f"Cocoon {cocoon_id} not found.")
|
|
|
|
|
|
with open(file_path, "r") as f:
|
|
|
cocoon = json.load(f)
|
|
|
|
|
|
return cocoon["wrapped"]
|
|
|
|
|
|
def wrap_encrypted(self, thought: Dict[str, Any]) -> str:
|
|
|
encrypted = self.fernet.encrypt(json.dumps(thought).encode()).decode()
|
|
|
cocoon = {
|
|
|
"type": "encrypted",
|
|
|
"id": f"cocoon_{random.randint(10000,99999)}",
|
|
|
"wrapped": encrypted
|
|
|
}
|
|
|
file_path = os.path.join(self.storage_path, cocoon["id"] + ".json")
|
|
|
|
|
|
with open(file_path, "w") as f:
|
|
|
json.dump(cocoon, f)
|
|
|
|
|
|
return cocoon["id"]
|
|
|
|
|
|
def unwrap_encrypted(self, cocoon_id: str) -> Dict[str, Any]:
|
|
|
file_path = os.path.join(self.storage_path, cocoon_id + ".json")
|
|
|
if not os.path.exists(file_path):
|
|
|
raise FileNotFoundError(f"Cocoon {cocoon_id} not found.")
|
|
|
|
|
|
with open(file_path, "r") as f:
|
|
|
cocoon = json.load(f)
|
|
|
|
|
|
decrypted = self.fernet.decrypt(cocoon["wrapped"].encode()).decode()
|
|
|
return json.loads(decrypted)
|
|
|
|
|
|
def _generate_wrapper(self, thought: Dict[str, Any], type_: str) -> Union[str, Dict[str, Any]]:
|
|
|
if type_ == "prompt":
|
|
|
return f"What does this mean in context? {thought}"
|
|
|
elif type_ == "function":
|
|
|
return f"def analyze(): return {thought}"
|
|
|
elif type_ == "symbolic":
|
|
|
return {k: round(v, 2) for k, v in thought.items()}
|
|
|
else:
|
|
|
return thought]
|
|
|
|
|
|
DreamReweaver
|
|
|
|
|
|
Purpose: Revives dormant/thought cocoons as creative “dreams” or planning prompts—fueling innovation or scenario synthesis.
|
|
|
|
|
|
|
|
|
import os
|
|
|
import json
|
|
|
import random
|
|
|
from typing import List, Dict
|
|
|
from cognition_cocooner import CognitionCocooner
|
|
|
|
|
|
class DreamReweaver:
|
|
|
"""
|
|
|
Reweaves cocooned thoughts into dream-like synthetic narratives or planning prompts.
|
|
|
"""
|
|
|
def __init__(self, cocoon_dir: str = "cocoons"):
|
|
|
self.cocooner = CognitionCocooner(storage_path=cocoon_dir)
|
|
|
self.dream_log = []
|
|
|
|
|
|
def generate_dream_sequence(self, limit: int = 5) -> List[str]:
|
|
|
dream_sequence = []
|
|
|
cocoons = self._load_cocoons()
|
|
|
selected = random.sample(cocoons, min(limit, len(cocoons)))
|
|
|
|
|
|
for cocoon in selected:
|
|
|
wrapped = cocoon.get("wrapped")
|
|
|
sequence = self._interpret_cocoon(wrapped, cocoon.get("type"))
|
|
|
self.dream_log.append(sequence)
|
|
|
dream_sequence.append(sequence)
|
|
|
|
|
|
return dream_sequence
|
|
|
|
|
|
def _interpret_cocoon(self, wrapped: str, type_: str) -> str:
|
|
|
if type_ == "prompt":
|
|
|
return f"[DreamPrompt] {wrapped}"
|
|
|
elif type_ == "function":
|
|
|
return f"[DreamFunction] {wrapped}"
|
|
|
elif type_ == "symbolic":
|
|
|
return f"[DreamSymbol] {wrapped}"
|
|
|
elif type_ == "encrypted":
|
|
|
return "[Encrypted Thought Cocoon - Decryption Required]"
|
|
|
else:
|
|
|
return "[Unknown Dream Form]"
|
|
|
|
|
|
def _load_cocoons(self) -> List[Dict]:
|
|
|
cocoons = []
|
|
|
for file in os.listdir(self.cocooner.storage_path):
|
|
|
if file.endswith(".json"):
|
|
|
path = os.path.join(self.cocooner.storage_path, file)
|
|
|
with open(path, "r") as f:
|
|
|
cocoons.append(json.load(f))
|
|
|
return cocoons
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
dr = DreamReweaver()
|
|
|
dreams = dr.generate_dream_sequence()
|
|
|
print("\n".join(dreams))]
|
|
|
|
|
|
3. Reasoning Orchestration & Multi-Perspective Engine
|
|
|
UniversalReasoning Core
|
|
|
|
|
|
Loads JSON config for dynamic feature toggling
|
|
|
|
|
|
Launches parallel perspective agents:
|
|
|
Newtonian logic (‘newton_thoughts’)
|
|
|
Da Vinci creative synthesis (‘davinci_insights’)
|
|
|
Human Intuition
|
|
|
Neural Network Modeling
|
|
|
Quantum Computing thinking
|
|
|
Resilient Kindness (emotion-driven)
|
|
|
Mathematical Analysis
|
|
|
Philosophical Inquiry
|
|
|
Copilot Mode (+future custom user agents)
|
|
|
Bias Mitigation & Psychological Layering
|
|
|
|
|
|
Integrates custom element metaphors (“Hydrogen”, “Diamond”) with executable abilities.
|
|
|
|
|
|
NLP Module:
|
|
|
Uses NLTK/VADER for advanced linguistic & sentiment analysis.
|
|
|
|
|
|
|
|
|
import json
|
|
|
import os
|
|
|
import logging
|
|
|
from typing import List, Dict
|
|
|
|
|
|
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
|
|
import nltk
|
|
|
from nltk.tokenize import word_tokenize
|
|
|
nltk.download('punkt', quiet=True)
|
|
|
|
|
|
from perspectives import (
|
|
|
NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
|
|
|
NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
|
|
|
MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective,
|
|
|
BiasMitigationPerspective, PsychologicalPerspective
|
|
|
)
|
|
|
|
|
|
from elements import Element
|
|
|
from memory_function import MemoryHandler
|
|
|
from dream_reweaver import DreamReweaver
|
|
|
from cognition_cocooner import CognitionCocooner
|
|
|
from quantum_spiderweb import QuantumSpiderweb
|
|
|
from ethical_governance import EthicalAIGovernance
|
|
|
|
|
|
|
|
|
def load_json_config(file_path: str) -> dict:
|
|
|
if not os.path.exists(file_path):
|
|
|
logging.error(f"Configuration file '{file_path}' not found.")
|
|
|
return {}
|
|
|
try:
|
|
|
with open(file_path, 'r') as file:
|
|
|
config = json.load(file)
|
|
|
config['allow_network_calls'] = False
|
|
|
return config
|
|
|
except json.JSONDecodeError as e:
|
|
|
logging.error(f"Error decoding JSON: {e}")
|
|
|
return {}
|
|
|
|
|
|
|
|
|
class RecognizerResult:
|
|
|
def __init__(self, text):
|
|
|
self.text = text
|
|
|
|
|
|
|
|
|
class CustomRecognizer:
|
|
|
def recognize(self, question: str):
|
|
|
if any(name in question.lower() for name in ["hydrogen", "diamond"]):
|
|
|
return RecognizerResult(question)
|
|
|
return RecognizerResult(None)
|
|
|
|
|
|
def get_top_intent(self, recognizer_result):
|
|
|
return "ElementDefense" if recognizer_result.text else "None"
|
|
|
|
|
|
|
|
|
class UniversalReasoning:
|
|
|
def __init__(self, config):
|
|
|
self.config = config
|
|
|
self.perspectives = self.initialize_perspectives()
|
|
|
self.elements = self.initialize_elements()
|
|
|
self.recognizer = CustomRecognizer()
|
|
|
self.sentiment_analyzer = SentimentIntensityAnalyzer()
|
|
|
self.memory_handler = MemoryHandler()
|
|
|
self.reweaver = DreamReweaver()
|
|
|
self.cocooner = CognitionCocooner()
|
|
|
self.quantum_graph = QuantumSpiderweb()
|
|
|
self.ethical_agent = EthicalAIGovernance()
|
|
|
|
|
|
def initialize_perspectives(self):
|
|
|
perspective_map = {
|
|
|
"newton": NewtonPerspective,
|
|
|
"davinci": DaVinciPerspective,
|
|
|
"human_intuition": HumanIntuitionPerspective,
|
|
|
"neural_network": NeuralNetworkPerspective,
|
|
|
"quantum_computing": QuantumComputingPerspective,
|
|
|
"resilient_kindness": ResilientKindnessPerspective,
|
|
|
"mathematical": MathematicalPerspective,
|
|
|
"philosophical": PhilosophicalPerspective,
|
|
|
"copilot": CopilotPerspective,
|
|
|
"bias_mitigation": BiasMitigationPerspective,
|
|
|
"psychological": PsychologicalPerspective
|
|
|
}
|
|
|
enabled = self.config.get('enabled_perspectives', list(perspective_map.keys()))
|
|
|
return [perspective_map[name](self.config) for name in enabled if name in perspective_map]
|
|
|
|
|
|
def initialize_elements(self):
|
|
|
return [
|
|
|
Element("Hydrogen", "H", "Lua", ["Simple", "Lightweight"], ["Fusion"], "Evasion"),
|
|
|
Element("Diamond", "D", "Kotlin", ["Hard", "Clear"], ["Cutting"], "Adaptability")
|
|
|
]
|
|
|
|
|
|
async def generate_response(self, question: str) -> str:
|
|
|
responses = []
|
|
|
tasks = []
|
|
|
|
|
|
for perspective in self.perspectives:
|
|
|
if asyncio.iscoroutinefunction(perspective.generate_response):
|
|
|
tasks.append(perspective.generate_response(question))
|
|
|
else:
|
|
|
async def sync_wrapper(p=perspective):
|
|
|
return p.generate_response(question)
|
|
|
tasks.append(sync_wrapper())
|
|
|
|
|
|
results = await asyncio.gather(*tasks, return_exceptions=True)
|
|
|
for result in results:
|
|
|
if isinstance(result, Exception):
|
|
|
logging.error(f"Perspective error: {result}")
|
|
|
else:
|
|
|
responses.append(result)
|
|
|
|
|
|
recognizer_result = self.recognizer.recognize(question)
|
|
|
if self.recognizer.get_top_intent(recognizer_result) == "ElementDefense":
|
|
|
for el in self.elements:
|
|
|
if el.name.lower() in recognizer_result.text.lower():
|
|
|
responses.append(el.execute_defense_function())
|
|
|
|
|
|
sentiment = self.sentiment_analyzer.polarity_scores(question)
|
|
|
ethical = self.config.get("ethical_considerations", "Act transparently and respectfully.")
|
|
|
responses.append(f"**Ethical Considerations:**\n{ethical}")
|
|
|
|
|
|
final_response = "\n\n".join(responses)
|
|
|
self.memory_handler.save(question, final_response)
|
|
|
self.reweaver.record_dream(question, final_response)
|
|
|
self.cocooner.wrap_and_store(final_response)
|
|
|
|
|
|
return final_response
|
|
|
]
|
|
|
|
|
|
Example Configuration JSON
|
|
|
|
|
|
{
|
|
|
"logging_enabled": true,
|
|
|
"log_level": "INFO",
|
|
|
"enabled_perspectives": ["newton", "human_intuition", "...etc"],
|
|
|
"ethical_considerations": "Always act with transparency...",
|
|
|
"enable_response_saving": true,
|
|
|
"response_save_path": "responses.txt",
|
|
|
"backup_responses": {
|
|
|
"enabled": true,
|
|
|
"backup_path": "backup_responses.txt"
|
|
|
}
|
|
|
}
|
|
|
|
|
|
Perspective Function Mapping Example (“What is the meaning of life?”)
|
|
|
|
|
|
[
|
|
|
{"name": "newton_thoughts", ...},
|
|
|
{"name": "davinci_insights", ...},
|
|
|
...and so forth...
|
|
|
]
|
|
|
|
|
|
4. Logging & Ethics Enforcement
|
|
|
|
|
|
Every layer is audit-ready:
|
|
|
|
|
|
All responses saved & backed up per configuration.
|
|
|
Explicit ethics notes appended to each output.
|
|
|
Perspective-specific logging for future training/audit/explainability.
|
|
|
|
|
|
5. API and Extensibility
|
|
|
|
|
|
The stack can be packaged as:
|
|
|
|
|
|
Local/CLI interface — fast prototyping/test bench environment.
|
|
|
REST/Web API endpoint — scalable cloud deployment using OpenAPI specifications.
|
|
|
SecureShell Companion Mode — diagnostic/sandboxed usage.
|
|
|
|
|
|
6. Licensing & Attribution
|
|
|
|
|
|
Protected by the Sovereign Innovation clause:
|
|
|
|
|
|
No replication or commercialization without written acknowledgment of Jonathan Harrison (Raiffs Bits LLC).
|
|
|
References incorporate materials from OpenAI / GPT-x-family per their terms.
|
|
|
|
|
|
Recognized contributors:
|
|
|
Design lead + corpus author: [Your Name / ORCID link]
|
|
|
Acknowledgments to external reviewers and the open-source Python ecosystem.
|
|
|
7. Future Directions
|
|
|
|
|
|
Codette embodies the transition to truly humane AI—context-aware reasoning with auditability at its core. Next steps may include:
|
|
|
|
|
|
Peer-reviewed reproducibility trials (open notebook science)
|
|
|
Physical companion prototype development (for accessibility/assistive tech)
|
|
|
Community-governed transparency layers—a model ecosystem for next-gen ethical AI.
|
|
|
|