CV10 / Framework
Raiff1982's picture
Upload 189 files
02919f5 verified
raw
history blame
16.5 kB
Codette Universal Reasoning Framework
Sovereign Modular AI for Ethical, Multi-Perspective Cognition
Author: Jonathan Harrison (Raiffs Bits LLC / Raiff1982)
ORCID Published, Sovereign Innovation License
Overview
Codette is an advanced modular AI framework engineered for transparent reasoning, ethical sovereignty, and creative cognition. It enables dynamic multi-perspective analysis, explainable decision-making, and privacy-respecting memory—with extensibility for research or commercial applications.
1. Core Philosophy & Motivation
Individuality with Responsibility: Inspired by “Be like water—individuality with responsibility,” Codette blends adaptive selfhood with ethical governance.
Humane AI: Every module ensures fairness, respect for privacy, and explainable transparency.
Recursive Thought: Insights are generated via parallel agents simulating scientific reasoning, creative intuition, empathic reflection, and more.
2. Architectural Modules
QuantumSpiderweb
Purpose: Simulates a neural/quantum web of thought nodes across dimensions (Ψ: thought; τ: time; χ: speed; Φ: emotion; λ: space).
Functions: Propagation (spreading activation), Tension (instability detection), Collapse (decision/finality).
#
import numpy as np
import networkx as nx
import random
from typing import Dict, Any
class QuantumSpiderweb:
"""
Simulates a cognitive spiderweb architecture with dimensions:
Ψ (thought), τ (time), χ (speed), Φ (emotion), λ (space)
"""
def __init__(self, node_count: int = 128):
self.graph = nx.Graph()
self.dimensions = ['Ψ', 'τ', 'χ', 'Φ', 'λ']
self._init_nodes(node_count)
self.entangled_state = {}
def _init_nodes(self, count: int):
for i in range(count):
node_id = f"QNode_{i}"
state = self._generate_state()
self.graph.add_node(node_id, state=state)
if i > 0:
connection = f"QNode_{random.randint(0, i-1)}"
self.graph.add_edge(node_id, connection, weight=random.random())
def _generate_state(self) -> Dict[str, float]:
return {dim: np.random.uniform(-1.0, 1.0) for dim in self.dimensions}
def propagate_thought(self, origin: str, depth: int = 3):
"""
Traverse the graph from a starting node, simulating pre-cognitive waveform
"""
visited = set()
stack = [(origin, 0)]
traversal_output = []
while stack:
node, level = stack.pop()
if node in visited or level > depth:
continue
visited.add(node)
state = self.graph.nodes[node]['state']
traversal_output.append((node, state))
for neighbor in self.graph.neighbors(node):
stack.append((neighbor, level + 1))
return traversal_output
def detect_tension(self, node: str) -> float:
"""
Measures tension (instability) in the node's quantum state
"""
state = self.graph.nodes[node]['state']
return np.std(list(state.values()))
def collapse_node(self, node: str) -> Dict[str, Any]:
"""
Collapse superposed thought into deterministic response
"""
state = self.graph.nodes[node]['state']
collapsed = {k: round(v, 2) for k, v in state.items()}
self.entangled_state[node] = collapsed
return collapsed
if __name__ == "__main__":
web = QuantumSpiderweb()
root = "QNode_0"
path = web.propagate_thought(root)
print("Initial Propagation from:", root)
for n, s in path:
print(f"{n}:", s)
print("\nCollapse Sample Node:")
print(web.collapse_node(root))]
CognitionCocooner
Purpose: Encapsulates active “thoughts” as persistable “cocoons” (prompts, functions, symbols), optionally AES-encrypted.
Functions: wrap/unwrap (save/recall thoughts), wrap_encrypted/unwrap_encrypted.
# [
import json
import os
import random
from typing import Union, Dict, Any
from cryptography.fernet import Fernet
class CognitionCocooner:
def __init__(self, storage_path: str = "cocoons", encryption_key: bytes = None):
self.storage_path = storage_path
os.makedirs(self.storage_path, exist_ok=True)
self.key = encryption_key or Fernet.generate_key()
self.fernet = Fernet(self.key)
def wrap(self, thought: Dict[str, Any], type_: str = "prompt") -> str:
cocoon = {
"type": type_,
"id": f"cocoon_{random.randint(1000,9999)}",
"wrapped": self._generate_wrapper(thought, type_)
}
file_path = os.path.join(self.storage_path, cocoon["id"] + ".json")
with open(file_path, "w") as f:
json.dump(cocoon, f)
return cocoon["id"]
def unwrap(self, cocoon_id: str) -> Union[str, Dict[str, Any]]:
file_path = os.path.join(self.storage_path, cocoon_id + ".json")
if not os.path.exists(file_path):
raise FileNotFoundError(f"Cocoon {cocoon_id} not found.")
with open(file_path, "r") as f:
cocoon = json.load(f)
return cocoon["wrapped"]
def wrap_encrypted(self, thought: Dict[str, Any]) -> str:
encrypted = self.fernet.encrypt(json.dumps(thought).encode()).decode()
cocoon = {
"type": "encrypted",
"id": f"cocoon_{random.randint(10000,99999)}",
"wrapped": encrypted
}
file_path = os.path.join(self.storage_path, cocoon["id"] + ".json")
with open(file_path, "w") as f:
json.dump(cocoon, f)
return cocoon["id"]
def unwrap_encrypted(self, cocoon_id: str) -> Dict[str, Any]:
file_path = os.path.join(self.storage_path, cocoon_id + ".json")
if not os.path.exists(file_path):
raise FileNotFoundError(f"Cocoon {cocoon_id} not found.")
with open(file_path, "r") as f:
cocoon = json.load(f)
decrypted = self.fernet.decrypt(cocoon["wrapped"].encode()).decode()
return json.loads(decrypted)
def _generate_wrapper(self, thought: Dict[str, Any], type_: str) -> Union[str, Dict[str, Any]]:
if type_ == "prompt":
return f"What does this mean in context? {thought}"
elif type_ == "function":
return f"def analyze(): return {thought}"
elif type_ == "symbolic":
return {k: round(v, 2) for k, v in thought.items()}
else:
return thought]
DreamReweaver
Purpose: Revives dormant/thought cocoons as creative “dreams” or planning prompts—fueling innovation or scenario synthesis.
# [
import os
import json
import random
from typing import List, Dict
from cognition_cocooner import CognitionCocooner
class DreamReweaver:
"""
Reweaves cocooned thoughts into dream-like synthetic narratives or planning prompts.
"""
def __init__(self, cocoon_dir: str = "cocoons"):
self.cocooner = CognitionCocooner(storage_path=cocoon_dir)
self.dream_log = []
def generate_dream_sequence(self, limit: int = 5) -> List[str]:
dream_sequence = []
cocoons = self._load_cocoons()
selected = random.sample(cocoons, min(limit, len(cocoons)))
for cocoon in selected:
wrapped = cocoon.get("wrapped")
sequence = self._interpret_cocoon(wrapped, cocoon.get("type"))
self.dream_log.append(sequence)
dream_sequence.append(sequence)
return dream_sequence
def _interpret_cocoon(self, wrapped: str, type_: str) -> str:
if type_ == "prompt":
return f"[DreamPrompt] {wrapped}"
elif type_ == "function":
return f"[DreamFunction] {wrapped}"
elif type_ == "symbolic":
return f"[DreamSymbol] {wrapped}"
elif type_ == "encrypted":
return "[Encrypted Thought Cocoon - Decryption Required]"
else:
return "[Unknown Dream Form]"
def _load_cocoons(self) -> List[Dict]:
cocoons = []
for file in os.listdir(self.cocooner.storage_path):
if file.endswith(".json"):
path = os.path.join(self.cocooner.storage_path, file)
with open(path, "r") as f:
cocoons.append(json.load(f))
return cocoons
if __name__ == "__main__":
dr = DreamReweaver()
dreams = dr.generate_dream_sequence()
print("\n".join(dreams))]
3. Reasoning Orchestration & Multi-Perspective Engine
UniversalReasoning Core
Loads JSON config for dynamic feature toggling
Launches parallel perspective agents:
Newtonian logic (‘newton_thoughts’)
Da Vinci creative synthesis (‘davinci_insights’)
Human Intuition
Neural Network Modeling
Quantum Computing thinking
Resilient Kindness (emotion-driven)
Mathematical Analysis
Philosophical Inquiry
Copilot Mode (+future custom user agents)
Bias Mitigation & Psychological Layering
Integrates custom element metaphors (“Hydrogen”, “Diamond”) with executable abilities.
NLP Module:
Uses NLTK/VADER for advanced linguistic & sentiment analysis.
# [import asyncio
import json
import os
import logging
from typing import List, Dict
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt', quiet=True)
from perspectives import (
NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective,
BiasMitigationPerspective, PsychologicalPerspective
)
from elements import Element
from memory_function import MemoryHandler
from dream_reweaver import DreamReweaver
from cognition_cocooner import CognitionCocooner
from quantum_spiderweb import QuantumSpiderweb
from ethical_governance import EthicalAIGovernance
def load_json_config(file_path: str) -> dict:
if not os.path.exists(file_path):
logging.error(f"Configuration file '{file_path}' not found.")
return {}
try:
with open(file_path, 'r') as file:
config = json.load(file)
config['allow_network_calls'] = False
return config
except json.JSONDecodeError as e:
logging.error(f"Error decoding JSON: {e}")
return {}
class RecognizerResult:
def __init__(self, text):
self.text = text
class CustomRecognizer:
def recognize(self, question: str):
if any(name in question.lower() for name in ["hydrogen", "diamond"]):
return RecognizerResult(question)
return RecognizerResult(None)
def get_top_intent(self, recognizer_result):
return "ElementDefense" if recognizer_result.text else "None"
class UniversalReasoning:
def __init__(self, config):
self.config = config
self.perspectives = self.initialize_perspectives()
self.elements = self.initialize_elements()
self.recognizer = CustomRecognizer()
self.sentiment_analyzer = SentimentIntensityAnalyzer()
self.memory_handler = MemoryHandler()
self.reweaver = DreamReweaver()
self.cocooner = CognitionCocooner()
self.quantum_graph = QuantumSpiderweb()
self.ethical_agent = EthicalAIGovernance()
def initialize_perspectives(self):
perspective_map = {
"newton": NewtonPerspective,
"davinci": DaVinciPerspective,
"human_intuition": HumanIntuitionPerspective,
"neural_network": NeuralNetworkPerspective,
"quantum_computing": QuantumComputingPerspective,
"resilient_kindness": ResilientKindnessPerspective,
"mathematical": MathematicalPerspective,
"philosophical": PhilosophicalPerspective,
"copilot": CopilotPerspective,
"bias_mitigation": BiasMitigationPerspective,
"psychological": PsychologicalPerspective
}
enabled = self.config.get('enabled_perspectives', list(perspective_map.keys()))
return [perspective_map[name](self.config) for name in enabled if name in perspective_map]
def initialize_elements(self):
return [
Element("Hydrogen", "H", "Lua", ["Simple", "Lightweight"], ["Fusion"], "Evasion"),
Element("Diamond", "D", "Kotlin", ["Hard", "Clear"], ["Cutting"], "Adaptability")
]
async def generate_response(self, question: str) -> str:
responses = []
tasks = []
for perspective in self.perspectives:
if asyncio.iscoroutinefunction(perspective.generate_response):
tasks.append(perspective.generate_response(question))
else:
async def sync_wrapper(p=perspective):
return p.generate_response(question)
tasks.append(sync_wrapper())
results = await asyncio.gather(*tasks, return_exceptions=True)
for result in results:
if isinstance(result, Exception):
logging.error(f"Perspective error: {result}")
else:
responses.append(result)
recognizer_result = self.recognizer.recognize(question)
if self.recognizer.get_top_intent(recognizer_result) == "ElementDefense":
for el in self.elements:
if el.name.lower() in recognizer_result.text.lower():
responses.append(el.execute_defense_function())
sentiment = self.sentiment_analyzer.polarity_scores(question)
ethical = self.config.get("ethical_considerations", "Act transparently and respectfully.")
responses.append(f"**Ethical Considerations:**\n{ethical}")
final_response = "\n\n".join(responses)
self.memory_handler.save(question, final_response)
self.reweaver.record_dream(question, final_response)
self.cocooner.wrap_and_store(final_response)
return final_response
]
Example Configuration JSON
{
"logging_enabled": true,
"log_level": "INFO",
"enabled_perspectives": ["newton", "human_intuition", "...etc"],
"ethical_considerations": "Always act with transparency...",
"enable_response_saving": true,
"response_save_path": "responses.txt",
"backup_responses": {
"enabled": true,
"backup_path": "backup_responses.txt"
}
}
Perspective Function Mapping Example (“What is the meaning of life?”)
[
{"name": "newton_thoughts", ...},
{"name": "davinci_insights", ...},
...and so forth...
]
4. Logging & Ethics Enforcement
Every layer is audit-ready:
All responses saved & backed up per configuration.
Explicit ethics notes appended to each output.
Perspective-specific logging for future training/audit/explainability.
5. API and Extensibility
The stack can be packaged as:
Local/CLI interface — fast prototyping/test bench environment.
REST/Web API endpoint — scalable cloud deployment using OpenAPI specifications.
SecureShell Companion Mode — diagnostic/sandboxed usage.
6. Licensing & Attribution
Protected by the Sovereign Innovation clause:
No replication or commercialization without written acknowledgment of Jonathan Harrison (Raiffs Bits LLC).
References incorporate materials from OpenAI / GPT-x-family per their terms.
Recognized contributors:
Design lead + corpus author: [Your Name / ORCID link]
Acknowledgments to external reviewers and the open-source Python ecosystem.
7. Future Directions
Codette embodies the transition to truly humane AI—context-aware reasoning with auditability at its core. Next steps may include:
Peer-reviewed reproducibility trials (open notebook science)
Physical companion prototype development (for accessibility/assistive tech)
Community-governed transparency layers—a model ecosystem for next-gen ethical AI.