CV10 / src /ai_core_system.py
Raiff1982's picture
Upload 24 files
559af1d verified
raw
history blame
31.7 kB
import aiohttp
import json
import torch
import torch.distributed as dist
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from components.adaptive_learning import AdaptiveLearningEnvironment
from components.ai_driven_creativity import AIDrivenCreativity
from components.collaborative_ai import CollaborativeAI
from components.cultural_sensitivity import CulturalSensitivityEngine
from components.data_processing import AdvancedDataProcessor
from components.dynamic_learning import DynamicLearner
from components.ethical_governance import EthicalAIGovernance
from components.explainable_ai import ExplainableAI
from components.feedback_manager import ImprovedFeedbackManager
from components.multimodal_analyzer import MultimodalAnalyzer
from components.neuro_symbolic import NeuroSymbolicEngine
from components.quantum_optimizer import QuantumInspiredOptimizer
from components.real_time_data import RealTimeDataIntegrator
from components.sentiment_analysis import EnhancedSentimentAnalyzer
from components.self_improving_ai import SelfImprovingAI
from components.user_personalization import UserPersonalizer
from models.cognitive_engine import BroaderPerspectiveEngine
from models.elements import Element
from models.healing_system import SelfHealingSystem
from models.safety_system import SafetySystem
from models.user_profiles import UserProfile
from utils.database import Database
from utils.logger import logger
class AICore:
"""Improved core system with cutting-edge capabilities"""
def __init__(self, config_path: str = "config/ai_assistant_config.json"):
self.config = self._load_config(config_path)
self.models = self._initialize_models()
self.cognition = BroaderPerspectiveEngine()
self.self_healing = SelfHealingSystem(self.config)
self.safety_system = SafetySystem()
self.emotional_analyzer = EnhancedSentimentAnalyzer()
self.elements = self._initialize_elements()
self.security_level = 0
self.http_session = aiohttp.ClientSession()
self.database = Database() # Initialize database
self.user_profiles = UserProfile(self.database) # Initialize user profiles
self.feedback_manager = ImprovedFeedbackManager(self.database) # Initialize feedback manager
self.context_manager = AdaptiveLearningEnvironment() # Initialize adaptive learning environment
self.data_fetcher = RealTimeDataIntegrator() # Initialize real-time data fetcher
self.sentiment_analyzer = EnhancedSentimentAnalyzer() # Initialize sentiment analyzer
self.data_processor = AdvancedDataProcessor() # Initialize advanced data processor
self.dynamic_learner = DynamicLearner() # Initialize dynamic learner
self.multimodal_analyzer = MultimodalAnalyzer() # Initialize multimodal analyzer
self.ethical_decision_maker = EthicalAIGovernance() # Initialize ethical decision maker
self.user_personalizer = UserPersonalizer(self.database) # Initialize user personalizer
self.ai_integrator = CollaborativeAI() # Initialize AI integrator
self.neuro_symbolic_engine = NeuroSymbolicEngine() # Initialize neuro-symbolic engine
self.explainable_ai = ExplainableAI() # Initialize explainable AI
self.quantum_inspired_optimizer = QuantumInspiredOptimizer() # Initialize quantum-inspired optimizer
self.cultural_sensitivity_engine = CulturalSensitivityEngine() # Initialize cultural sensitivity engine
self.self_improving_ai = SelfImprovingAI() # Initialize self-improving AI
self.ai_driven_creativity = AIDrivenCreativity() # Initialize AI-driven creativity
self._validate_perspectives()
def _load_config(self, config_path: str) -> dict:
"""Load configuration from a file"""
with open(config_path, 'r') as file:
return json.load(file)
def _initialize_models(self):
"""Initialize models required by the AICore class"""
models = {
"mistralai": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
}
return models
def _initialize_elements(self):
"""Initialize elements with their defense abilities"""
elements = {
"hydrogen": Element("Hydrogen", "H", "Python", ["Lightweight", "Reactive"], ["Combustion"], "evasion"),
"carbon": Element("Carbon", "C", "Java", ["Versatile", "Strong"], ["Bonding"], "adaptability"),
"iron": Element("Iron", "Fe", "C++", ["Durable", "Magnetic"], ["Rusting"], "fortification"),
"silicon": Element("Silicon", "Si", "JavaScript", ["Semiconductor", "Abundant"], ["Doping"], "barrier"),
"oxygen": Element("Oxygen", "O", "Rust", ["Oxidizing", "Life-supporting"], ["Combustion"], "regeneration")
}
return elements
def _validate_perspectives(self):
"""Ensure configured perspectives are valid"""
valid = self.cognition.available_perspectives
invalid = [p for p in self.config["perspectives"] if p not in valid]
if invalid:
logger.warning(f"Removing invalid perspectives: {invalid}")
self.config["perspectives"] = [p for p in self.config["perspectives"] if p in valid]
async def _process_perspectives(self, query: str) -> List[str]:
"""Safely process perspectives using validated methods"""
perspectives = []
for p in self.config["perspectives"]:
try:
method = self.cognition.get_perspective_method(p)
perspectives.append(method(query))
except Exception as e:
logger.error(f"Perspective processing failed: {e}")
return perspectives
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
"""Generate response with advanced capabilities"""
try:
# Initialize temporary modifiers/filters for this query
response_modifiers = []
response_filters = []
# Execute element defenses
for element in self.elements.values():
element.execute_defense_function(self, response_modifiers, response_filters)
# Process perspectives and generate response
perspectives = await self._process_perspectives(query)
model_response = await self._generate_local_model_response(query)
# Apply sentiment analysis
sentiment = self.sentiment_analyzer.detailed_analysis(query)
# Apply modifiers and filters
final_response = model_response
for modifier in response_modifiers:
final_response = modifier(final_response)
for filter_func in response_filters:
final_response = filter_func(final_response)
# Adjust response based on feedback
feedback = self.database.get_latest_feedback(user_id)
if feedback:
final_response = self.feedback_manager.adjust_response_based_on_feedback(final_response, feedback)
# Log user interaction for analytics
self.database.log_interaction(user_id, query, final_response)
# Update context
self.context_manager.update_environment(user_id, {"query": query, "response": final_response})
# Personalize response
final_response = self.user_personalizer.personalize_response(final_response, user_id)
# Apply ethical decision-making framework
final_response = self.ethical_decision_maker.enforce_policies(final_response)
# Explain the decision
explanation = self.explainable_ai.explain_decision(final_response, query)
return {
"insights": perspectives,
"response": final_response,
"sentiment": sentiment,
"security_level": self.security_level,
"health_status": await self.self_healing.check_health(),
"explanation": explanation
}
except Exception as e:
logger.error(f"Response generation failed: {e}")
return {"error": "Processing failed - safety protocols engaged"}
async def _generate_local_model_response(self, query: str) -> str:
"""Generate a response from the local model"""
inputs = self.models['tokenizer'](query, return_tensors='pt')
outputs = self.models['mistralai'].generate(**inputs)
return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True)
async def shutdown(self):
"""Proper async resource cleanup"""
await self.http_session.close()
await self.database.close() # Close the database connection
# Optimization Techniques
def apply_quantization(self):
"""Apply quantization to the model"""
self.models['mistralai'] = torch.quantization.quantize_dynamic(
self.models['mistralai'], {torch.nn.Linear}, dtype=torch.qint8
)
def apply_pruning(self):
"""Apply pruning to the model"""
parameters_to_prune = (
(self.models['mistralai'].transformer.h[i].attn.c_attn, 'weight') for i in range(self.models['mistralai'].config.n_layer)
)
torch.nn.utils.prune.global_unstructured(
parameters_to_prune,
pruning_method=torch.nn.utils.prune.L1Unstructured,
amount=0.4,
)
def apply_mixed_precision_training(self):
"""Enable mixed precision training"""
scaler = torch.cuda.amp.GradScaler()
return scaler
def setup_distributed_training(self):
"""Setup distributed training"""
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK", "0"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
if world_size > 1:
dist.init_process_group("nccl")
torch.cuda.set_device(local_rank)
return world_size, rank, local_rank
def optimize_data_pipeline(self):
"""Optimize data loading and preprocessing pipeline"""
# Example: Using DALI for efficient data loading
import nvidia.dali.pipeline as pipeline
from nvidia.dali.plugin.pytorch import DALIGenericIterator
class ExternalInputIterator:
def __init__(self, batch_size):
self.batch_size = batch_size
def __iter__(self):
self.i = 0
return self
def __next__(self):
self.i += 1
if self.i > 10:
raise StopIteration
return [np.random.rand(3, 224, 224).astype(np.float32) for _ in range(self.batch_size)]
pipe = pipeline.Pipeline(batch_size=32, num_threads=2, device_id=0)
with pipe:
images = pipeline.fn.external_source(source=ExternalInputIterator(32), num_outputs=1)
pipe.set_outputs(images)
self.data_loader = DALIGenericIterator(pipe, ['data'], reader_name='Reader')
def apply_gradient_accumulation(self, optimizer, loss, scaler=None, accumulation_steps=4):
"""Apply gradient accumulation to simulate larger batch sizes"""
if scaler:
scaler.scale(loss).backward()
if (self.step + 1) % accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
loss.backward()
if (self.step + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
def apply_knowledge_distillation(self, teacher_model, student_model, data_loader, optimizer, loss_fn, temperature=1.0, alpha=0.5):
"""Apply knowledge distillation from teacher model to student model"""
student_model.train()
teacher_model.eval()
for data in data_loader:
inputs, labels = data
inputs, labels = inputs.to(self.device), labels.to(self.device)
with torch.no_grad():
teacher_outputs = teacher_model(inputs)
student_outputs = student_model(inputs)
loss = alpha * loss_fn(student_outputs, labels) + (1 - alpha) * loss_fn(student_outputs / temperature, teacher_outputs / temperature)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def monitor_performance(self):
"""Monitor and profile performance"""
from torch.profiler import profile, record_function, ProfilerActivity
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof:
with record_function("model_inference"):
self.generate_response("Sample query", 1)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
def apply_vector_search(self, embeddings, query_embedding, top_k=5):
"""Apply vector search to find the most similar embeddings"""
from sklearn.metrics.pairwise import cosine_similarity
similarities = cosine_similarity(query_embedding, embeddings)
top_k_indices = similarities.argsort()[0][-top_k:]
return top_k_indices
def apply_prompt_engineering(self, prompt):
"""Apply prompt engineering to improve model responses"""
engineered_prompt = f"Please provide a detailed and informative response to the following query: {prompt}"
return engineered_prompt
def optimize_model(self):
"""Optimize the model using various techniques"""
self.apply_quantization()
self.apply_pruning()
scaler = self.apply_mixed_precision_training()
world_size, rank, local_rank = self.setup_distributed_training()
self.optimize_data_pipeline()
self.monitor_performance()
# Example usage of gradient accumulation
optimizer = torch.optim.Adam(self.models['mistralai'].parameters(), lr=1e-4)
for step, (inputs, labels) in enumerate(self.data_loader):
self.step = step
loss = self.models['mistralai'](inputs, labels)
self.apply_gradient_accumulation(optimizer, loss, scaler)
# Example usage of knowledge distillation
teacher_model = AutoModelForCausalLM.from_pretrained("teacher_model_path")
student_model = AutoModelForCausalLM.from_pretrained("student_model_path")
loss_fn = torch.nn.CrossEntropyLoss()
self.apply_knowledge_distillation(teacher_model, student_model, self.data_loader, optimizer, loss_fn)
# Example usage of vector search
embeddings = self.models['mistralai'].get_input_embeddings().weight.data.cpu().numpy()
query_embedding = self.models['mistralai'].get_input_embeddings()(torch.tensor([self.models['tokenizer'].encode("query")])).cpu().numpy()
top_k_indices = self.apply_vector_search(embeddings, query_embedding)
print(f"Top {top_k} similar embeddings indices: {top_k_indices}")
# Example usage of prompt engineering
prompt = "What is the capital of France?"
engineered_prompt = self.apply_prompt_engineering(prompt)
print(f"Engineered prompt: {engineered_prompt}")
if __name__ == "__main__":
ai_core = AICore(config_path="config/ai_assistant_config.json")
ai_core.optimize_model()
import aiohttp
import json
import torch
import torch.distributed as dist
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from components.adaptive_learning import AdaptiveLearningEnvironment
from components.ai_driven_creativity import AIDrivenCreativity
from components.collaborative_ai import CollaborativeAI
from components.cultural_sensitivity import CulturalSensitivityEngine
from components.data_processing import AdvancedDataProcessor
from components.dynamic_learning import DynamicLearner
from components.ethical_governance import EthicalAIGovernance
from components.explainable_ai import ExplainableAI
from components.feedback_manager import ImprovedFeedbackManager
from components.multimodal_analyzer import MultimodalAnalyzer
from components.neuro_symbolic import NeuroSymbolicEngine
from components.quantum_optimizer import QuantumInspiredOptimizer
from components.real_time_data import RealTimeDataIntegrator
from components.sentiment_analysis import EnhancedSentimentAnalyzer
from components.self_improving_ai import SelfImprovingAI
from components.user_personalization import UserPersonalizer
from models.cognitive_engine import BroaderPerspectiveEngine
from models.elements import Element
from models.healing_system import SelfHealingSystem
from models.safety_system import SafetySystem
from models.user_profiles import UserProfile
from utils.database import Database
from utils.logger import logger
class AICore:
"""Improved core system with cutting-edge capabilities"""
def __init__(self, config_path: str = "config/ai_assistant_config.json"):
self.config = self._load_config(config_path)
self.models = self._initialize_models()
self.cognition = BroaderPerspectiveEngine()
self.self_healing = SelfHealingSystem(self.config)
self.safety_system = SafetySystem()
self.emotional_analyzer = EnhancedSentimentAnalyzer()
self.elements = self._initialize_elements()
self.security_level = 0
self.http_session = aiohttp.ClientSession()
self.database = Database() # Initialize database
self.user_profiles = UserProfile(self.database) # Initialize user profiles
self.feedback_manager = ImprovedFeedbackManager(self.database) # Initialize feedback manager
self.context_manager = AdaptiveLearningEnvironment() # Initialize adaptive learning environment
self.data_fetcher = RealTimeDataIntegrator() # Initialize real-time data fetcher
self.sentiment_analyzer = EnhancedSentimentAnalyzer() # Initialize sentiment analyzer
self.data_processor = AdvancedDataProcessor() # Initialize advanced data processor
self.dynamic_learner = DynamicLearner() # Initialize dynamic learner
self.multimodal_analyzer = MultimodalAnalyzer() # Initialize multimodal analyzer
self.ethical_decision_maker = EthicalAIGovernance() # Initialize ethical decision maker
self.user_personalizer = UserPersonalizer(self.database) # Initialize user personalizer
self.ai_integrator = CollaborativeAI() # Initialize AI integrator
self.neuro_symbolic_engine = NeuroSymbolicEngine() # Initialize neuro-symbolic engine
self.explainable_ai = ExplainableAI() # Initialize explainable AI
self.quantum_inspired_optimizer = QuantumInspiredOptimizer() # Initialize quantum-inspired optimizer
self.cultural_sensitivity_engine = CulturalSensitivityEngine() # Initialize cultural sensitivity engine
self.self_improving_ai = SelfImprovingAI() # Initialize self-improving AI
self.ai_driven_creativity = AIDrivenCreativity() # Initialize AI-driven creativity
self._validate_perspectives()
def _load_config(self, config_path: str) -> dict:
"""Load configuration from a file"""
with open(config_path, 'r') as file:
return json.load(file)
def _initialize_models(self):
"""Initialize models required by the AICore class"""
models = {
"mistralai": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
}
return models
def _initialize_elements(self):
"""Initialize elements with their defense abilities"""
elements = {
"hydrogen": Element("Hydrogen", "H", "Python", ["Lightweight", "Reactive"], ["Combustion"], "evasion"),
"carbon": Element("Carbon", "C", "Java", ["Versatile", "Strong"], ["Bonding"], "adaptability"),
"iron": Element("Iron", "Fe", "C++", ["Durable", "Magnetic"], ["Rusting"], "fortification"),
"silicon": Element("Silicon", "Si", "JavaScript", ["Semiconductor", "Abundant"], ["Doping"], "barrier"),
"oxygen": Element("Oxygen", "O", "Rust", ["Oxidizing", "Life-supporting"], ["Combustion"], "regeneration")
}
return elements
def _validate_perspectives(self):
"""Ensure configured perspectives are valid"""
valid = self.cognition.available_perspectives
invalid = [p for p in self.config["perspectives"] if p not in valid]
if invalid:
logger.warning(f"Removing invalid perspectives: {invalid}")
self.config["perspectives"] = [p for p in self.config["perspectives"] if p in valid]
async def _process_perspectives(self, query: str) -> List[str]:
"""Safely process perspectives using validated methods"""
perspectives = []
for p in self.config["perspectives"]:
try:
method = self.cognition.get_perspective_method(p)
perspectives.append(method(query))
except Exception as e:
logger.error(f"Perspective processing failed: {e}")
return perspectives
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
"""Generate response with advanced capabilities"""
try:
# Initialize temporary modifiers/filters for this query
response_modifiers = []
response_filters = []
# Execute element defenses
for element in self.elements.values():
element.execute_defense_function(self, response_modifiers, response_filters)
# Process perspectives and generate response
perspectives = await self._process_perspectives(query)
model_response = await self._generate_local_model_response(query)
# Apply sentiment analysis
sentiment = self.sentiment_analyzer.detailed_analysis(query)
# Apply modifiers and filters
final_response = model_response
for modifier in response_modifiers:
final_response = modifier(final_response)
for filter_func in response_filters:
final_response = filter_func(final_response)
# Adjust response based on feedback
feedback = self.database.get_latest_feedback(user_id)
if feedback:
final_response = self.feedback_manager.adjust_response_based_on_feedback(final_response, feedback)
# Log user interaction for analytics
self.database.log_interaction(user_id, query, final_response)
# Update context
self.context_manager.update_environment(user_id, {"query": query, "response": final_response})
# Personalize response
final_response = self.user_personalizer.personalize_response(final_response, user_id)
# Apply ethical decision-making framework
final_response = self.ethical_decision_maker.enforce_policies(final_response)
# Explain the decision
explanation = self.explainable_ai.explain_decision(final_response, query)
return {
"insights": perspectives,
"response": final_response,
"sentiment": sentiment,
"security_level": self.security_level,
"health_status": await self.self_healing.check_health(),
"explanation": explanation
}
except Exception as e:
logger.error(f"Response generation failed: {e}")
return {"error": "Processing failed - safety protocols engaged"}
async def _generate_local_model_response(self, query: str) -> str:
"""Generate a response from the local model"""
inputs = self.models['tokenizer'](query, return_tensors='pt')
outputs = self.models['mistralai'].generate(**inputs)
return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True)
async def shutdown(self):
"""Proper async resource cleanup"""
await self.http_session.close()
await self.database.close() # Close the database connection
# Optimization Techniques
def apply_quantization(self):
"""Apply quantization to the model"""
self.models['mistralai'] = torch.quantization.quantize_dynamic(
self.models['mistralai'], {torch.nn.Linear}, dtype=torch.qint8
)
def apply_pruning(self):
"""Apply pruning to the model"""
parameters_to_prune = (
(self.models['mistralai'].transformer.h[i].attn.c_attn, 'weight') for i in range(self.models['mistralai'].config.n_layer)
)
torch.nn.utils.prune.global_unstructured(
parameters_to_prune,
pruning_method=torch.nn.utils.prune.L1Unstructured,
amount=0.4,
)
def apply_mixed_precision_training(self):
"""Enable mixed precision training"""
scaler = torch.cuda.amp.GradScaler()
return scaler
def setup_distributed_training(self):
"""Setup distributed training"""
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK", "0"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
if world_size > 1:
dist.init_process_group("nccl")
torch.cuda.set_device(local_rank)
return world_size, rank, local_rank
def optimize_data_pipeline(self):
"""Optimize data loading and preprocessing pipeline"""
# Example: Using DALI for efficient data loading
import nvidia.dali.pipeline as pipeline
from nvidia.dali.plugin.pytorch import DALIGenericIterator
class ExternalInputIterator:
def __init__(self, batch_size):
self.batch_size = batch_size
def __iter__(self):
self.i = 0
return self
def __next__(self):
self.i += 1
if self.i > 10:
raise StopIteration
return [np.random.rand(3, 224, 224).astype(np.float32) for _ in range(self.batch_size)]
pipe = pipeline.Pipeline(batch_size=32, num_threads=2, device_id=0)
with pipe:
images = pipeline.fn.external_source(source=ExternalInputIterator(32), num_outputs=1)
pipe.set_outputs(images)
self.data_loader = DALIGenericIterator(pipe, ['data'], reader_name='Reader')
def apply_gradient_accumulation(self, optimizer, loss, scaler=None, accumulation_steps=4):
"""Apply gradient accumulation to simulate larger batch sizes"""
if scaler:
scaler.scale(loss).backward()
if (self.step + 1) % accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
loss.backward()
if (self.step + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
def apply_knowledge_distillation(self, teacher_model, student_model, data_loader, optimizer, loss_fn, temperature=1.0, alpha=0.5):
"""Apply knowledge distillation from teacher model to student model"""
student_model.train()
teacher_model.eval()
for data in data_loader:
inputs, labels = data
inputs, labels = inputs.to(self.device), labels.to(self.device)
with torch.no_grad():
teacher_outputs = teacher_model(inputs)
student_outputs = student_model(inputs)
loss = alpha * loss_fn(student_outputs, labels) + (1 - alpha) * loss_fn(student_outputs / temperature, teacher_outputs / temperature)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def monitor_performance(self):
"""Monitor and profile performance"""
from torch.profiler import profile, record_function, ProfilerActivity
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof:
with record_function("model_inference"):
self.generate_response("Sample query", 1)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
def apply_vector_search(self, embeddings, query_embedding, top_k=5):
"""Apply vector search to find the most similar embeddings"""
from sklearn.metrics.pairwise import cosine_similarity
similarities = cosine_similarity(query_embedding, embeddings)
top_k_indices = similarities.argsort()[0][-top_k:]
return top_k_indices
def apply_prompt_engineering(self, prompt):
"""Apply prompt engineering to improve model responses"""
engineered_prompt = f"Please provide a detailed and informative response to the following query: {prompt}"
return engineered_prompt
def optimize_model(self):
"""Optimize the model using various techniques"""
self.apply_quantization()
self.apply_pruning()
scaler = self.apply_mixed_precision_training()
world_size, rank, local_rank = self.setup_distributed_training()
self.optimize_data_pipeline()
self.monitor_performance()
# Example usage of gradient accumulation
optimizer = torch.optim.Adam(self.models['mistralai'].parameters(), lr=1e-4)
for step, (inputs, labels) in enumerate(self.data_loader):
self.step = step
loss = self.models['mistralai'](inputs, labels)
self.apply_gradient_accumulation(optimizer, loss, scaler)
# Example usage of knowledge distillation
teacher_model = AutoModelForCausalLM.from_pretrained("teacher_model_path")
student_model = AutoModelForCausalLM.from_pretrained("student_model_path")
loss_fn = torch.nn.CrossEntropyLoss()
self.apply_knowledge_distillation(teacher_model, student_model, self.data_loader, optimizer, loss_fn)
# Example usage of vector search
embeddings = self.models['mistralai'].get_input_embeddings().weight.data.cpu().numpy()
query_embedding = self.models['mistralai'].get_input_embeddings()(torch.tensor([self.models['tokenizer'].encode("query")])).cpu().numpy()
top_k_indices = self.apply_vector_search(embeddings, query_embedding)
print(f"Top {top_k} similar embeddings indices: {top_k_indices}")
# Example usage of prompt engineering
prompt = "What is the capital of France?"
engineered_prompt = self.apply_prompt_engineering(prompt)
print(f"Engineered prompt: {engineered_prompt}")
if __name__ == "__main__":
ai_core = AICore(config_path="config/ai_assistant_config.json")
ai_core.optimize_model()