|
|
import aiohttp
|
|
|
import json
|
|
|
import asyncio
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
from typing import List, Dict, Any
|
|
|
from components.adaptive_learning import AdaptiveLearningEnvironment
|
|
|
from components.ai_driven_creativity import AIDrivenCreativity
|
|
|
from components.collaborative_ai import CollaborativeAI
|
|
|
from components.cultural_sensitivity import CulturalSensitivityEngine
|
|
|
from components.data_processing import AdvancedDataProcessor
|
|
|
from components.dynamic_learning import DynamicLearner
|
|
|
from components.ethical_governance import EthicalAIGovernance
|
|
|
from components.explainable_ai import ExplainableAI
|
|
|
from components.feedback_manager import ImprovedFeedbackManager
|
|
|
from components.multimodal_analyzer import MultimodalAnalyzer
|
|
|
from components.neuro_symbolic import NeuroSymbolicEngine
|
|
|
from components.quantum_optimizer import QuantumInspiredOptimizer
|
|
|
from components.real_time_data import RealTimeDataIntegrator
|
|
|
from components.sentiment_analysis import EnhancedSentimentAnalyzer
|
|
|
from components.self_improving_ai import SelfImprovingAI
|
|
|
from components.user_personalization import UserPersonalizer
|
|
|
from models.cognitive_engine import BroaderPerspectiveEngine
|
|
|
from models.elements import Element
|
|
|
from models.healing_system import SelfHealingSystem
|
|
|
from models.safety_system import SafetySystem
|
|
|
from models.user_profiles import UserProfile
|
|
|
from utils.database import Database
|
|
|
from utils.logger import logger
|
|
|
|
|
|
class AICore:
|
|
|
"""Improved core system with cutting-edge capabilities"""
|
|
|
def __init__(self, config_path: str = "config.json"):
|
|
|
self.config = self._load_config(config_path)
|
|
|
self.models = self._initialize_models()
|
|
|
self.cognition = BroaderPerspectiveEngine()
|
|
|
self.self_healing = SelfHealingSystem(self.config)
|
|
|
self.safety_system = SafetySystem()
|
|
|
self.sentiment_analyzer = EnhancedSentimentAnalyzer()
|
|
|
self.elements = self._initialize_elements()
|
|
|
self.security_level = 0
|
|
|
self.http_session = aiohttp.ClientSession()
|
|
|
self.database = Database()
|
|
|
self.user_profiles = UserProfile(self.database)
|
|
|
self.feedback_manager = ImprovedFeedbackManager(self.database)
|
|
|
self.context_manager = AdaptiveLearningEnvironment()
|
|
|
self.data_fetcher = RealTimeDataIntegrator()
|
|
|
self.data_processor = AdvancedDataProcessor()
|
|
|
self.dynamic_learner = DynamicLearner()
|
|
|
self.multimodal_analyzer = MultimodalAnalyzer()
|
|
|
self.ethical_decision_maker = EthicalAIGovernance()
|
|
|
self.user_personalizer = UserPersonalizer(self.database)
|
|
|
self.ai_integrator = CollaborativeAI()
|
|
|
self.neuro_symbolic_engine = NeuroSymbolicEngine()
|
|
|
self.explainable_ai = ExplainableAI()
|
|
|
self.quantum_inspired_optimizer = QuantumInspiredOptimizer()
|
|
|
self.cultural_sensitivity_engine = CulturalSensitivityEngine()
|
|
|
self.self_improving_ai = SelfImprovingAI()
|
|
|
self.ai_driven_creativity = AIDrivenCreativity()
|
|
|
self._validate_perspectives()
|
|
|
|
|
|
|
|
|
|
|
|
def _generate_local_model_response(self, query: str) -> str:
|
|
|
"""Generate a response from the local model (synchronous)"""
|
|
|
inputs = self.models*An external link was removed to protect your privacy.*
|
|
|
outputs = self.models['mistralai'].generate(
|
|
|
**inputs,
|
|
|
max_new_tokens=150,
|
|
|
temperature=0.7
|
|
|
)
|
|
|
return self.models['tokenizer'].decode(outputs, skip_special_tokens=True)
|
|
|
|
|
|
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
|
|
"""Generate response with advanced capabilities"""
|
|
|
try:
|
|
|
response_modifiers = []
|
|
|
response_filters = []
|
|
|
|
|
|
for element in self.elements.values():
|
|
|
element.execute_defense_function(self, response_modifiers, response_filters)
|
|
|
|
|
|
perspectives = await self._process_perspectives(query)
|
|
|
model_response = self._generate_local_model_response(query)
|
|
|
|
|
|
sentiment = self.sentiment_analyzer.detailed_analysis(query)
|
|
|
|
|
|
final_response = model_response
|
|
|
for modifier in response_modifiers:
|
|
|
final_response = modifier(final_response)
|
|
|
for filter_func in response_filters:
|
|
|
final_response = filter_func(final_response)
|
|
|
|
|
|
|
|
|
feedback = await self.database.get_latest_feedback(user_id)
|
|
|
if feedback:
|
|
|
final_response = self.feedback_manager.adjust_response_based_on_feedback(
|
|
|
final_response, feedback
|
|
|
)
|
|
|
|
|
|
await self.database.log_interaction(user_id, query, final_response)
|
|
|
|
|
|
|
|
|
await self.context_manager.update_environment(
|
|
|
user_id, {"query": query, "response": final_response}
|
|
|
)
|
|
|
|
|
|
|
|
|
final_response = await self.user_personalizer.personalize_response(
|
|
|
final_response, user_id
|
|
|
)
|
|
|
|
|
|
final_response = await self.ethical_decision_maker.enforce_policies(
|
|
|
final_response
|
|
|
)
|
|
|
|
|
|
explanation = await self.explainable_ai.explain_decision(
|
|
|
final_response, query
|
|
|
)
|
|
|
|
|
|
return {
|
|
|
"insights": perspectives,
|
|
|
"response": final_response,
|
|
|
"sentiment": sentiment,
|
|
|
"security_level": self.security_level,
|
|
|
"health_status": await self.self_healing.check_health(),
|
|
|
"explanation": explanation,
|
|
|
"emotional_adaptation": await self._emotional_adaptation(query),
|
|
|
"predictive_analytics": await self._predictive_analytics(query),
|
|
|
"holistic_health_monitoring": await self._holistic_health_monitoring(query)
|
|
|
}
|
|
|
except Exception as e:
|
|
|
logger.error(f"Response generation failed: {e}")
|
|
|
return {"error": "Processing failed - safety protocols engaged"}
|
|
|
|
|
|
async def _emotional_adaptation(self, query: str) -> str:
|
|
|
"""Adapt responses based on user's emotional state"""
|
|
|
sentiment_result = self.sentiment_analyzer.analyze(query)
|
|
|
sentiment = sentiment_result['score'] if sentiment_result['label'] == 'POSITIVE' else -sentiment_result['score']
|
|
|
if sentiment < -0.5:
|
|
|
return "I understand this might be frustrating. Let's work through it together."
|
|
|
elif sentiment > 0.5:
|
|
|
return "Great to hear! Let's keep the positive momentum going."
|
|
|
else:
|
|
|
return "I'm here to help with whatever you need."
|
|
|
|
|
|
|
|
|
|
|
|
def analyze_identity(self, micro_generations: List[Dict[str, str]], informational_states: List[Dict[str, str]], perspectives: List[str], quantum_analogies: Dict[str, Any], philosophical_context: Dict[str, bool]) -> Dict[str, Any]:
|
|
|
"""
|
|
|
A function that calculates and analyzes identity as a fractal and recursive process.
|
|
|
|
|
|
Parameters:
|
|
|
- micro_generations (List[Dict[str, str]]): List of micro-generations reflecting state changes in the identity system.
|
|
|
- informational_states (List[Dict[str, str]]): Array of informational states derived from previous generations.
|
|
|
- perspectives (List[str]): Views on the identity based on original components and current system.
|
|
|
- quantum_analogies (Dict[str, Any]): Quantum analogies used in reasoning about identity.
|
|
|
- philosophical_context (Dict[str, bool]): Philosophical context of identity.
|
|
|
|
|
|
Returns:
|
|
|
- Dict[str, Any]: Analysis results.
|
|
|
"""
|
|
|
|
|
|
def calculate_fractal_dimension(states: List[Dict[str, str]]) -> float:
|
|
|
|
|
|
return len(states) ** 0.5
|
|
|
|
|
|
def recursive_analysis(states: List[Dict[str, str]], depth: int = 0) -> Dict[str, Any]:
|
|
|
|
|
|
if depth == 0 or not states:
|
|
|
return {"depth": depth, "states": states}
|
|
|
return {
|
|
|
"depth": depth,
|
|
|
"states": states,
|
|
|
"sub_analysis": recursive_analysis(states[:-1], depth - 1)
|
|
|
}
|
|
|
|
|
|
def analyze_perspectives(perspectives: List[str]) -> Dict[str, Any]:
|
|
|
|
|
|
return {
|
|
|
"count": len(perspectives),
|
|
|
"unique_perspectives": list(set(perspectives))
|
|
|
}
|
|
|
|
|
|
def apply_quantum_analogies(analogies: Dict[str, Any]) -> str:
|
|
|
|
|
|
if analogies.get("entanglement"):
|
|
|
return "Entanglement analogy applied."
|
|
|
return "No quantum analogy applied."
|
|
|
|
|
|
def philosophical_analysis(context: Dict[str, bool]) -> str:
|
|
|
|
|
|
if context.get("continuity") and context.get("emergent"):
|
|
|
return "Identity is viewed as a continuous and evolving process."
|
|
|
return "Identity analysis based on provided philosophical context."
|
|
|
|
|
|
|
|
|
fractal_dimension = calculate_fractal_dimension(informational_states)
|
|
|
|
|
|
|
|
|
recursive_results = recursive_analysis(micro_generations, depth=3)
|
|
|
|
|
|
|
|
|
perspectives_analysis = analyze_perspectives(perspectives)
|
|
|
|
|
|
|
|
|
quantum_analysis = apply_quantum_analogies(quantum_analogies)
|
|
|
|
|
|
|
|
|
philosophical_results = philosophical_analysis(philosophical_context)
|
|
|
|
|
|
|
|
|
analysis_results = {
|
|
|
"fractal_dimension": fractal_dimension,
|
|
|
"recursive_analysis": recursive_results,
|
|
|
"perspectives_analysis": perspectives_analysis,
|
|
|
"quantum_analysis": quantum_analysis,
|
|
|
"philosophical_results": philosophical_results
|
|
|
}
|
|
|
|
|
|
return analysis_results
|
|
|
|
|
|
async def main():
|
|
|
ai_core = AICore()
|
|
|
try:
|
|
|
while True:
|
|
|
query = input("User: ")
|
|
|
if query.lower() in ["exit", "quit"]:
|
|
|
break
|
|
|
response = await ai_core.generate_response(query, user_id=123)
|
|
|
print(f"AI Core: {response}")
|
|
|
finally:
|
|
|
await ai_core.shutdown()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
asyncio.run(main()) |