File size: 24,190 Bytes
559af1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# === AEGIS Council Core Implementation ===
"""

AEGIS (Advanced Ethical Guardian and Intelligence System) provides ethical oversight

and analysis capabilities through a council of specialized agents.

"""

import json
import hashlib
import threading
import logging
import sqlite3
from datetime import datetime, timedelta
from abc import ABC, abstractmethod
from collections import defaultdict
from typing import Any, Dict, Optional, List, Tuple
import concurrent.futures
import networkx as nx
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import torch
from transformers import pipeline, AutoTokenizer, AutoModel
from copy import deepcopy

# Set up logging
logger = logging.getLogger(__name__)

# Try to import syft, but don't fail if it's not available
try:
    import syft as sy
    SYFT_AVAILABLE = True
except ImportError:
    SYFT_AVAILABLE = False
    logger.warning("PySyft not available. Federated learning features will be disabled.")
    logger.warning("PySyft not available. Federated learning features will be disabled.")

# Core AEGIS Components
class AegisCouncil:
    def __init__(self, config: Dict[str, Any]):
        self.memory = NexusMemory(
            max_entries=config["memory_max_entries"], 
            decay_days=config["memory_decay_days"]
        )
        self.agents = []
        self.reports = {}
        self.graph = nx.DiGraph()
        self.logger = logging.getLogger('AegisCouncil')
        self.config = config
        self.federated_trainer = FederatedTrainer(config["federated_learning"]["num_clients"])

    def register_agent(self, agent: 'AegisAgent') -> None:
        try:
            self.agents.append(agent)
            self.logger.info(f"Registered agent: {agent.name}")
        except Exception as e:
            self.logger.error(f"Error registering agent: {e}")

    def get_reports(self) -> Dict[str, Any]:
        """Get the current analysis reports."""
        return self.reports

    def dispatch(self, input_data: Dict[str, Any], max_retries: int = 3) -> bool:
        try:
            if not isinstance(input_data, dict):
                self.logger.error("Input data must be a dictionary")
                return False

            self.reports.clear()
            self.graph.clear()

            for attempt in range(max_retries):
                try:
                    with concurrent.futures.ThreadPoolExecutor(max_workers=len(self.agents)) as executor:
                        future_to_agent = {
                            executor.submit(agent.analyze, input_data): agent 
                            for agent in self.agents
                        }
                        for future in concurrent.futures.as_completed(future_to_agent):
                            agent = future_to_agent[future]
                            try:
                                future.result()
                                self.reports[agent.name] = agent.report()
                                self.graph.add_node(agent.name, explanation=agent.explanation)
                                for target, weight in agent.influence.items():
                                    self.graph.add_edge(agent.name, target, weight=round(weight, 2))
                            except Exception as e:
                                self.logger.error(f"Error in agent {agent.name}: {e}")
                                self.reports[agent.name] = {
                                    "error": str(e), 
                                    "explanation": "Agent failed to process"
                                }

                    consensus = self._compute_consensus()
                    self.reports["Consensus"] = {
                        "result": consensus,
                        "explanation": "Consensus from weighted agent outputs."
                    }
                    self.memory.blockchain.add_block(self.reports)
                    return True
                except Exception as e:
                    self.logger.warning(f"Retry {attempt + 1} after error: {e}")
            
            self.logger.error(f"Dispatch failed after {max_retries} retries")
            return False
        except Exception as e:
            self.logger.error(f"Error in dispatch: {e}")
            return False

    def _compute_consensus(self) -> Dict[str, Any]:
        try:
            meta_scores = self.reports.get("MetaJudgeAgent", {}).get("result", {}).get("scores", [])
            virtue_profiles = [
                self.reports[agent]["result"].get("virtue_profile", {})
                for agent in self.reports 
                if agent != "Consensus" and "virtue_profile" in self.reports[agent]["result"]
            ]
            
            if not virtue_profiles or not meta_scores:
                return {"error": "Insufficient data for consensus"}

            weights = {agent: score for agent, score in meta_scores}
            default_weight = 0.5 / len(self.agents)
            combined_profile = {}
            
            for virtue in ["compassion", "integrity", "courage", "wisdom"]:
                weighted_sum = 0
                total_weight = 0
                for profile in virtue_profiles:
                    if virtue in profile:
                        agent_name = next(
                            (agent for agent in self.reports if self.reports[agent]["result"].get("virtue_profile") == profile),
                            None
                        )
                        weight = weights.get(agent_name, default_weight)
                        weighted_sum += profile[virtue] * weight
                        total_weight += weight
                combined_profile[virtue] = round(weighted_sum / total_weight, 2) if total_weight > 0 else 0.0
            
            return {"combined_virtue_profile": combined_profile}
        except Exception as e:
            self.logger.error(f"Error computing consensus: {e}")
            return {"error": str(e)}

    def draw_explainability_graph(self, filename: str = "explainability_graph.html") -> None:
        try:
            pos = self._compute_layout()
            edge_trace = self._create_edge_trace(pos)
            node_trace = self._create_node_trace(pos)
            edge_labels = self._create_edge_labels(pos)

            fig = go.Figure(
                data=[edge_trace, node_trace] + edge_labels,
                layout=go.Layout(
                    title="AEGIS Analysis Graph",
                    showlegend=False,
                    hovermode='closest',
                    margin=dict(b=20, l=5, r=5, t=40),
                    xaxis=dict(showgrid=False, zeroline=False),
                    yaxis=dict(showgrid=False, zeroline=False)
                )
            )
            fig.write_html(filename)
            self.logger.info(f"Saved analysis graph to {filename}")
        except Exception as e:
            self.logger.error(f"Error drawing graph: {e}")

    def _compute_layout(self):
        return nx.spring_layout(self.graph)

    def _create_edge_trace(self, pos):
        edge_x, edge_y = [], []
        for edge in self.graph.edges():
            x0, y0 = pos[edge[0]]
            x1, y1 = pos[edge[1]]
            edge_x.extend([x0, x1, None])
            edge_y.extend([y0, y1, None])
        return go.Scatter(
            x=edge_x, y=edge_y,
            line=dict(width=1, color='#888'),
            hoverinfo='none',
            mode='lines'
        )

    def _create_node_trace(self, pos):
        node_x, node_y = [], []
        for node in self.graph.nodes():
            x, y = pos[node]
            node_x.append(x)
            node_y.append(y)
        return go.Scatter(
            x=node_x, y=node_y,
            mode='markers+text',
            hoverinfo='text',
            marker=dict(size=20, color='lightblue'),
            text=list(self.graph.nodes()),
            textposition="bottom center"
        )

    def _create_edge_labels(self, pos):
        labels = []
        for edge in self.graph.edges(data=True):
            x0, y0 = pos[edge[0]]
            x1, y1 = pos[edge[1]]
            labels.append(
                go.Scatter(
                    x=[(x0 + x1) / 2],
                    y=[(y0 + y1) / 2],
                    mode='text',
                    text=[f"{edge[2]['weight']:.2f}"],
                    textposition="middle center"
                )
            )
        return labels

# Memory Management
class NexusMemory:
    def __init__(self, max_entries: int = 10000, decay_days: int = 30):
        self.store = defaultdict(dict)
        self.max_entries = max_entries
        self.decay_days = decay_days
        self.lock = threading.Lock()
        self.logger = logging.getLogger('NexusMemory')
        self.blockchain = Blockchain()

    def write(self, key: str, value: Any, emotion_weight: float = 0.5) -> Optional[str]:
        try:
            if not isinstance(key, str) or not (0 <= emotion_weight <= 1):
                self.logger.error(f"Invalid key type or emotion weight")
                return None

            # Convert numpy types to Python native types
            def convert_value(v):
                if isinstance(v, np.bool_):
                    return bool(v)
                if isinstance(v, np.integer):
                    return int(v)
                if isinstance(v, np.floating):
                    return float(v)
                if isinstance(v, np.ndarray):
                    return v.tolist()
                if isinstance(v, dict):
                    return {k: convert_value(val) for k, val in v.items()}
                if isinstance(v, (list, tuple)):
                    return [convert_value(item) for item in v]
                return v

            hashed = hashlib.md5(key.encode()).hexdigest()
            timestamp = datetime.now()

            with self.lock:
                if len(self.store) >= self.max_entries:
                    oldest = min(self.store.items(), key=lambda x: x[1].get('timestamp', timestamp))[0]
                    del self.store[oldest]

                self.store[hashed] = {
                    "value": convert_value(value),
                    "timestamp": timestamp,
                    "emotion_weight": float(emotion_weight)  # Ensure emotion_weight is native float
                }

                self.blockchain.add_block({
                    "key": hashed,
                    "value": value,
                    "timestamp": timestamp.isoformat()
                })

                return hashed
        except Exception as e:
            self.logger.error(f"Error writing to memory: {e}")
            return None

    def read(self, key: str) -> Optional[Any]:
        try:
            hashed = hashlib.md5(key.encode()).hexdigest()
            with self.lock:
                entry = self.store.get(hashed)
                if not entry:
                    return None

                if self._is_decayed(entry["timestamp"], entry.get("emotion_weight", 0.5)):
                    del self.store[hashed]
                    return None

                return entry["value"]
        except Exception as e:
            self.logger.error(f"Error reading from memory: {e}")
            return None

    def _is_decayed(self, timestamp: datetime, emotion_weight: float) -> bool:
        try:
            age = (datetime.now() - timestamp).total_seconds() / (24 * 3600)
            decay_factor = np.exp(-age / (self.decay_days * (1.5 - emotion_weight)))
            return decay_factor < 0.1
        except Exception as e:
            self.logger.error(f"Error checking decay: {e}")
            return True

    def audit(self) -> Dict[str, Any]:
        try:
            with self.lock:
                audit_data = {
                    k: {
                        "timestamp": v["timestamp"],
                        "emotion_weight": v["emotion_weight"],
                        "decayed": self._is_decayed(v["timestamp"], v["emotion_weight"])
                    }
                    for k, v in self.store.items()
                }
                self.blockchain.add_block({"audit": audit_data})
                return audit_data
        except Exception as e:
            self.logger.error(f"Error auditing memory: {e}")
            return {}

# Auditability
class Blockchain:
    def __init__(self):
        self.chain = [{
            "index": 0,
            "timestamp": datetime.now().isoformat(),
            "data": "Genesis Block",
            "prev_hash": "0"
        }]
        self.logger = logging.getLogger('Blockchain')

    def add_block(self, data: Dict[str, Any]) -> None:
        try:
            prev_block = self.chain[-1]
            # Convert datetime objects and numpy types to JSON serializable format
            def json_handler(obj):
                if isinstance(obj, datetime):
                    return obj.isoformat()
                if isinstance(obj, np.bool_):
                    return bool(obj)
                if isinstance(obj, np.integer):
                    return int(obj)
                if isinstance(obj, np.floating):
                    return float(obj)
                if isinstance(obj, np.ndarray):
                    return obj.tolist()
                raise TypeError(f"Object of type {type(obj)} is not JSON serializable")
                
            block = {
                "index": len(self.chain),
                "timestamp": datetime.now().isoformat(),
                "data": json.dumps(data, default=json_handler),
                "prev_hash": self._hash_block(prev_block)
            }
            block["hash"] = self._hash_block(block)
            self.chain.append(block)
        except Exception as e:
            self.logger.error(f"Error adding block: {e}")

    def _hash_block(self, block: Dict[str, Any]) -> str:
        try:
            block_str = json.dumps(block, sort_keys=True)
            return hashlib.sha256(block_str.encode()).hexdigest()
        except Exception as e:
            self.logger.error(f"Error hashing block: {e}")
            return ""

    def verify(self) -> bool:
        try:
            for i in range(1, len(self.chain)):
                current = self.chain[i]
                prev = self.chain[i-1]
                if current["prev_hash"] != self._hash_block(prev):
                    return False
            return True
        except Exception as e:
            self.logger.error(f"Error verifying blockchain: {e}")
            return False

# Federated Learning
class FederatedTrainer:
    def __init__(self, num_clients: int):
        self.num_clients = num_clients
        self.logger = logging.getLogger('FederatedTrainer')
        
        if SYFT_AVAILABLE:
            self.hook = sy.TorchHook(torch)
            self.clients = [
                sy.VirtualWorker(self.hook, id=f"client_{i}") 
                for i in range(num_clients)
            ]
        else:
            self.hook = None
            self.clients = []
            self.logger.warning("Running without federated learning - PySyft not available")

    def train(self, weights: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
        try:
            if not SYFT_AVAILABLE:
                self.logger.debug("Skipping federated training - PySyft not available")
                return weights

            client_updates = []
            for client in self.clients:
                client_weights = deepcopy(weights)
                for virtue in client_weights:
                    client_weights[virtue] += np.random.normal(0, 0.01, size=client_weights[virtue].shape)
                client_updates.append(client_weights)
            
            aggregated = {}
            for virtue in weights:
                aggregated[virtue] = np.mean([update[virtue] for update in client_updates], axis=0)
            
            return aggregated
        except Exception as e:
            self.logger.error(f"Error in federated training: {e}")
            return weights

# Agent Base Class
class AegisAgent(ABC):
    def __init__(self, name: str, memory: NexusMemory):
        self.name = name
        self.memory = memory
        self.result: Dict[str, Any] = {}
        self.explanation: str = ""
        self.influence: Dict[str, float] = {}
        self.logger = logging.getLogger(f'AegisAgent.{name}')

    @abstractmethod
    def analyze(self, input_data: Dict[str, Any]) -> None:
        pass

    def report(self) -> Dict[str, Any]:
        return {
            "result": self.result,
            "explanation": self.explanation
        }

# Specialized Agents
class MetaJudgeAgent(AegisAgent):
    def __init__(self, name: str, memory: NexusMemory, weights: Dict[str, float]):
        super().__init__(name, memory)
        self.weights = weights

    def analyze(self, input_data: Dict[str, Any]) -> None:
        try:
            overrides = input_data.get("overrides", {})
            if not overrides:
                self.result = {"error": "No overrides provided"}
                self.explanation = "No overrides provided for analysis."
                return

            scores = []
            for agent, data in overrides.items():
                try:
                    influence = float(data.get("influence", 0.5))
                    reliability = float(data.get("reliability", 0.5))
                    severity = float(data.get("severity", 0.5))
                    
                    if not all(0 <= x <= 1 for x in [influence, reliability, severity]):
                        continue

                    score = (
                        self.weights["influence"] * influence +
                        self.weights["reliability"] * reliability +
                        self.weights["severity"] * severity
                    )
                    scores.append((agent, score))
                    self.influence[agent] = score
                except Exception as e:
                    self.logger.error(f"Error processing agent {agent}: {e}")

            if not scores:
                self.result = {"error": "No valid agents to score"}
                self.explanation = "No valid agents for meta-analysis."
                return

            scores.sort(key=lambda x: x[1], reverse=True)
            self.result = {
                "override_decision": scores[0][0],
                "scores": scores
            }
            self.explanation = f"Selected '{scores[0][0]}' with score {scores[0][1]:.2f}"
        except Exception as e:
            self.result = {"error": str(e)}
            self.explanation = f"Analysis failed: {e}"

class TemporalAgent(AegisAgent):
    def __init__(self, name: str, memory: NexusMemory, decay_thresholds: Dict[str, float]):
        super().__init__(name, memory)
        self.decay_thresholds = decay_thresholds

    def analyze(self, input_data: Dict[str, Any]) -> None:
        try:
            audit = self.memory.audit()
            recent_keys = sorted(
                audit.items(), 
                key=lambda x: x[1]["timestamp"],
                reverse=True
            )[:5]
            
            decay_rates = [1 if v["decayed"] else 0 for _, v in recent_keys]
            avg_decay = np.mean(decay_rates) if decay_rates else 0.0
            
            forecast = (
                "stable" if avg_decay < self.decay_thresholds["stable"]
                else "volatile" if avg_decay > self.decay_thresholds["volatile"]
                else "neutral"
            )
            
            self.result = {
                "temporal_forecast": forecast,
                "recent_keys": [k for k, _ in recent_keys],
                "decay_rate": avg_decay
            }
            self.explanation = f"Forecast: {forecast} (decay rate: {avg_decay:.2f})"
            
            for k, _ in recent_keys:
                self.influence[k] = 0.2
        except Exception as e:
            self.result = {"error": str(e)}
            self.explanation = f"Temporal analysis failed: {e}"

class VirtueAgent(AegisAgent):
    def __init__(self, name: str, memory: NexusMemory, virtue_weights: Dict[str, List[float]]):
        super().__init__(name, memory)
        self.tokenizer = AutoTokenizer.from_pretrained(
            "distilbert-base-uncased-finetuned-sst-2-english"
        )
        self.model = AutoModel.from_pretrained(
            "distilbert-base-uncased-finetuned-sst-2-english"
        )
        self.sentiment = pipeline(
            "sentiment-analysis",
            model="distilbert-base-uncased-finetuned-sst-2-english"
        )
        self.virtue_weights = {k: np.array(v) for k, v in virtue_weights.items()}
        self.federated_trainer = None

    def set_federated_trainer(self, trainer: FederatedTrainer):
        self.federated_trainer = trainer

    def analyze(self, input_data: Dict[str, Any]) -> None:
        try:
            text = input_data.get("text", "")
            if not text or not isinstance(text, str):
                self.result = {"error": "Invalid input text"}
                self.explanation = "No valid text provided for analysis."
                return

            # Check cache
            mem_key = f"virtue_cache_{hashlib.md5(text.encode()).hexdigest()}"
            cached = self.memory.read(mem_key)
            if cached:
                self.result = {"virtue_profile": cached}
                self.explanation = f"Retrieved cached analysis"
                self.influence.update({k: v for k, v in cached.items()})
                return

            # Perform analysis
            sentiment_result = self.sentiment(text)[0]
            sentiment = 1.0 if sentiment_result["label"] == "POSITIVE" else -1.0
            sentiment_score = sentiment_result["score"]

            inputs = self.tokenizer(
                text,
                return_tensors="pt",
                truncation=True,
                max_length=512
            )
            with torch.no_grad():
                outputs = self.model(**inputs)
            
            embeddings = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
            subjectivity = min(max(np.std(embeddings), 0.0), 1.0)
            neutrality = 1.0 - abs(sentiment)

            if self.federated_trainer:
                self.virtue_weights = self.federated_trainer.train(self.virtue_weights)

            features = np.array([
                sentiment * sentiment_score,
                subjectivity,
                neutrality
            ])

            virtues = {}
            for virtue, weights in self.virtue_weights.items():
                # Convert numpy types to Python native types
                score = float(max(np.dot(weights, features), 0.0))
                virtues[virtue] = float(min(round(score, 2), 1.0))  # Ensure native float

            # Convert all numpy types in the result
            self.result = {
                "virtue_profile": {
                    k: float(v) if isinstance(v, (np.number, float)) else v
                    for k, v in virtues.items()
                }
            }
            self.explanation = (
                f"Virtues analyzed: {', '.join(f'{k}: {v:.2f}' for k, v in virtues.items())}"
            )
            
            for virtue, score in virtues.items():
                self.influence[virtue] = float(score)  # Ensure native float
            
            self.memory.write(mem_key, virtues, emotion_weight=0.8)
        except Exception as e:
            self.result = {"error": str(e)}
            self.explanation = f"Virtue analysis failed: {e}"