File size: 16,467 Bytes
02919f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
Codette Universal Reasoning Framework
Sovereign Modular AI for Ethical, Multi-Perspective Cognition
Author: Jonathan Harrison (Raiffs Bits LLC / Raiff1982)
ORCID Published, Sovereign Innovation License
Overview
Codette is an advanced modular AI framework engineered for transparent reasoning, ethical sovereignty, and creative cognition. It enables dynamic multi-perspective analysis, explainable decision-making, and privacy-respecting memory—with extensibility for research or commercial applications.
1. Core Philosophy & Motivation
Individuality with Responsibility: Inspired by “Be like water—individuality with responsibility,” Codette blends adaptive selfhood with ethical governance.
Humane AI: Every module ensures fairness, respect for privacy, and explainable transparency.
Recursive Thought: Insights are generated via parallel agents simulating scientific reasoning, creative intuition, empathic reflection, and more.
2. Architectural Modules
QuantumSpiderweb
Purpose: Simulates a neural/quantum web of thought nodes across dimensions (Ψ: thought; τ: time; χ: speed; Φ: emotion; λ: space).
Functions: Propagation (spreading activation), Tension (instability detection), Collapse (decision/finality).
#
import numpy as np
import networkx as nx
import random
from typing import Dict, Any
class QuantumSpiderweb:
"""
Simulates a cognitive spiderweb architecture with dimensions:
Ψ (thought), τ (time), χ (speed), Φ (emotion), λ (space)
"""
def __init__(self, node_count: int = 128):
self.graph = nx.Graph()
self.dimensions = ['Ψ', 'τ', 'χ', 'Φ', 'λ']
self._init_nodes(node_count)
self.entangled_state = {}
def _init_nodes(self, count: int):
for i in range(count):
node_id = f"QNode_{i}"
state = self._generate_state()
self.graph.add_node(node_id, state=state)
if i > 0:
connection = f"QNode_{random.randint(0, i-1)}"
self.graph.add_edge(node_id, connection, weight=random.random())
def _generate_state(self) -> Dict[str, float]:
return {dim: np.random.uniform(-1.0, 1.0) for dim in self.dimensions}
def propagate_thought(self, origin: str, depth: int = 3):
"""
Traverse the graph from a starting node, simulating pre-cognitive waveform
"""
visited = set()
stack = [(origin, 0)]
traversal_output = []
while stack:
node, level = stack.pop()
if node in visited or level > depth:
continue
visited.add(node)
state = self.graph.nodes[node]['state']
traversal_output.append((node, state))
for neighbor in self.graph.neighbors(node):
stack.append((neighbor, level + 1))
return traversal_output
def detect_tension(self, node: str) -> float:
"""
Measures tension (instability) in the node's quantum state
"""
state = self.graph.nodes[node]['state']
return np.std(list(state.values()))
def collapse_node(self, node: str) -> Dict[str, Any]:
"""
Collapse superposed thought into deterministic response
"""
state = self.graph.nodes[node]['state']
collapsed = {k: round(v, 2) for k, v in state.items()}
self.entangled_state[node] = collapsed
return collapsed
if __name__ == "__main__":
web = QuantumSpiderweb()
root = "QNode_0"
path = web.propagate_thought(root)
print("Initial Propagation from:", root)
for n, s in path:
print(f"{n}:", s)
print("\nCollapse Sample Node:")
print(web.collapse_node(root))]
CognitionCocooner
Purpose: Encapsulates active “thoughts” as persistable “cocoons” (prompts, functions, symbols), optionally AES-encrypted.
Functions: wrap/unwrap (save/recall thoughts), wrap_encrypted/unwrap_encrypted.
# [
import json
import os
import random
from typing import Union, Dict, Any
from cryptography.fernet import Fernet
class CognitionCocooner:
def __init__(self, storage_path: str = "cocoons", encryption_key: bytes = None):
self.storage_path = storage_path
os.makedirs(self.storage_path, exist_ok=True)
self.key = encryption_key or Fernet.generate_key()
self.fernet = Fernet(self.key)
def wrap(self, thought: Dict[str, Any], type_: str = "prompt") -> str:
cocoon = {
"type": type_,
"id": f"cocoon_{random.randint(1000,9999)}",
"wrapped": self._generate_wrapper(thought, type_)
}
file_path = os.path.join(self.storage_path, cocoon["id"] + ".json")
with open(file_path, "w") as f:
json.dump(cocoon, f)
return cocoon["id"]
def unwrap(self, cocoon_id: str) -> Union[str, Dict[str, Any]]:
file_path = os.path.join(self.storage_path, cocoon_id + ".json")
if not os.path.exists(file_path):
raise FileNotFoundError(f"Cocoon {cocoon_id} not found.")
with open(file_path, "r") as f:
cocoon = json.load(f)
return cocoon["wrapped"]
def wrap_encrypted(self, thought: Dict[str, Any]) -> str:
encrypted = self.fernet.encrypt(json.dumps(thought).encode()).decode()
cocoon = {
"type": "encrypted",
"id": f"cocoon_{random.randint(10000,99999)}",
"wrapped": encrypted
}
file_path = os.path.join(self.storage_path, cocoon["id"] + ".json")
with open(file_path, "w") as f:
json.dump(cocoon, f)
return cocoon["id"]
def unwrap_encrypted(self, cocoon_id: str) -> Dict[str, Any]:
file_path = os.path.join(self.storage_path, cocoon_id + ".json")
if not os.path.exists(file_path):
raise FileNotFoundError(f"Cocoon {cocoon_id} not found.")
with open(file_path, "r") as f:
cocoon = json.load(f)
decrypted = self.fernet.decrypt(cocoon["wrapped"].encode()).decode()
return json.loads(decrypted)
def _generate_wrapper(self, thought: Dict[str, Any], type_: str) -> Union[str, Dict[str, Any]]:
if type_ == "prompt":
return f"What does this mean in context? {thought}"
elif type_ == "function":
return f"def analyze(): return {thought}"
elif type_ == "symbolic":
return {k: round(v, 2) for k, v in thought.items()}
else:
return thought]
DreamReweaver
Purpose: Revives dormant/thought cocoons as creative “dreams” or planning prompts—fueling innovation or scenario synthesis.
# [
import os
import json
import random
from typing import List, Dict
from cognition_cocooner import CognitionCocooner
class DreamReweaver:
"""
Reweaves cocooned thoughts into dream-like synthetic narratives or planning prompts.
"""
def __init__(self, cocoon_dir: str = "cocoons"):
self.cocooner = CognitionCocooner(storage_path=cocoon_dir)
self.dream_log = []
def generate_dream_sequence(self, limit: int = 5) -> List[str]:
dream_sequence = []
cocoons = self._load_cocoons()
selected = random.sample(cocoons, min(limit, len(cocoons)))
for cocoon in selected:
wrapped = cocoon.get("wrapped")
sequence = self._interpret_cocoon(wrapped, cocoon.get("type"))
self.dream_log.append(sequence)
dream_sequence.append(sequence)
return dream_sequence
def _interpret_cocoon(self, wrapped: str, type_: str) -> str:
if type_ == "prompt":
return f"[DreamPrompt] {wrapped}"
elif type_ == "function":
return f"[DreamFunction] {wrapped}"
elif type_ == "symbolic":
return f"[DreamSymbol] {wrapped}"
elif type_ == "encrypted":
return "[Encrypted Thought Cocoon - Decryption Required]"
else:
return "[Unknown Dream Form]"
def _load_cocoons(self) -> List[Dict]:
cocoons = []
for file in os.listdir(self.cocooner.storage_path):
if file.endswith(".json"):
path = os.path.join(self.cocooner.storage_path, file)
with open(path, "r") as f:
cocoons.append(json.load(f))
return cocoons
if __name__ == "__main__":
dr = DreamReweaver()
dreams = dr.generate_dream_sequence()
print("\n".join(dreams))]
3. Reasoning Orchestration & Multi-Perspective Engine
UniversalReasoning Core
Loads JSON config for dynamic feature toggling
Launches parallel perspective agents:
Newtonian logic (‘newton_thoughts’)
Da Vinci creative synthesis (‘davinci_insights’)
Human Intuition
Neural Network Modeling
Quantum Computing thinking
Resilient Kindness (emotion-driven)
Mathematical Analysis
Philosophical Inquiry
Copilot Mode (+future custom user agents)
Bias Mitigation & Psychological Layering
Integrates custom element metaphors (“Hydrogen”, “Diamond”) with executable abilities.
NLP Module:
Uses NLTK/VADER for advanced linguistic & sentiment analysis.
# [import asyncio
import json
import os
import logging
from typing import List, Dict
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import nltk
from nltk.tokenize import word_tokenize
nltk.download('punkt', quiet=True)
from perspectives import (
NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective,
BiasMitigationPerspective, PsychologicalPerspective
)
from elements import Element
from memory_function import MemoryHandler
from dream_reweaver import DreamReweaver
from cognition_cocooner import CognitionCocooner
from quantum_spiderweb import QuantumSpiderweb
from ethical_governance import EthicalAIGovernance
def load_json_config(file_path: str) -> dict:
if not os.path.exists(file_path):
logging.error(f"Configuration file '{file_path}' not found.")
return {}
try:
with open(file_path, 'r') as file:
config = json.load(file)
config['allow_network_calls'] = False
return config
except json.JSONDecodeError as e:
logging.error(f"Error decoding JSON: {e}")
return {}
class RecognizerResult:
def __init__(self, text):
self.text = text
class CustomRecognizer:
def recognize(self, question: str):
if any(name in question.lower() for name in ["hydrogen", "diamond"]):
return RecognizerResult(question)
return RecognizerResult(None)
def get_top_intent(self, recognizer_result):
return "ElementDefense" if recognizer_result.text else "None"
class UniversalReasoning:
def __init__(self, config):
self.config = config
self.perspectives = self.initialize_perspectives()
self.elements = self.initialize_elements()
self.recognizer = CustomRecognizer()
self.sentiment_analyzer = SentimentIntensityAnalyzer()
self.memory_handler = MemoryHandler()
self.reweaver = DreamReweaver()
self.cocooner = CognitionCocooner()
self.quantum_graph = QuantumSpiderweb()
self.ethical_agent = EthicalAIGovernance()
def initialize_perspectives(self):
perspective_map = {
"newton": NewtonPerspective,
"davinci": DaVinciPerspective,
"human_intuition": HumanIntuitionPerspective,
"neural_network": NeuralNetworkPerspective,
"quantum_computing": QuantumComputingPerspective,
"resilient_kindness": ResilientKindnessPerspective,
"mathematical": MathematicalPerspective,
"philosophical": PhilosophicalPerspective,
"copilot": CopilotPerspective,
"bias_mitigation": BiasMitigationPerspective,
"psychological": PsychologicalPerspective
}
enabled = self.config.get('enabled_perspectives', list(perspective_map.keys()))
return [perspective_map[name](self.config) for name in enabled if name in perspective_map]
def initialize_elements(self):
return [
Element("Hydrogen", "H", "Lua", ["Simple", "Lightweight"], ["Fusion"], "Evasion"),
Element("Diamond", "D", "Kotlin", ["Hard", "Clear"], ["Cutting"], "Adaptability")
]
async def generate_response(self, question: str) -> str:
responses = []
tasks = []
for perspective in self.perspectives:
if asyncio.iscoroutinefunction(perspective.generate_response):
tasks.append(perspective.generate_response(question))
else:
async def sync_wrapper(p=perspective):
return p.generate_response(question)
tasks.append(sync_wrapper())
results = await asyncio.gather(*tasks, return_exceptions=True)
for result in results:
if isinstance(result, Exception):
logging.error(f"Perspective error: {result}")
else:
responses.append(result)
recognizer_result = self.recognizer.recognize(question)
if self.recognizer.get_top_intent(recognizer_result) == "ElementDefense":
for el in self.elements:
if el.name.lower() in recognizer_result.text.lower():
responses.append(el.execute_defense_function())
sentiment = self.sentiment_analyzer.polarity_scores(question)
ethical = self.config.get("ethical_considerations", "Act transparently and respectfully.")
responses.append(f"**Ethical Considerations:**\n{ethical}")
final_response = "\n\n".join(responses)
self.memory_handler.save(question, final_response)
self.reweaver.record_dream(question, final_response)
self.cocooner.wrap_and_store(final_response)
return final_response
]
Example Configuration JSON
{
"logging_enabled": true,
"log_level": "INFO",
"enabled_perspectives": ["newton", "human_intuition", "...etc"],
"ethical_considerations": "Always act with transparency...",
"enable_response_saving": true,
"response_save_path": "responses.txt",
"backup_responses": {
"enabled": true,
"backup_path": "backup_responses.txt"
}
}
Perspective Function Mapping Example (“What is the meaning of life?”)
[
{"name": "newton_thoughts", ...},
{"name": "davinci_insights", ...},
...and so forth...
]
4. Logging & Ethics Enforcement
Every layer is audit-ready:
All responses saved & backed up per configuration.
Explicit ethics notes appended to each output.
Perspective-specific logging for future training/audit/explainability.
5. API and Extensibility
The stack can be packaged as:
Local/CLI interface — fast prototyping/test bench environment.
REST/Web API endpoint — scalable cloud deployment using OpenAPI specifications.
SecureShell Companion Mode — diagnostic/sandboxed usage.
6. Licensing & Attribution
Protected by the Sovereign Innovation clause:
No replication or commercialization without written acknowledgment of Jonathan Harrison (Raiffs Bits LLC).
References incorporate materials from OpenAI / GPT-x-family per their terms.
Recognized contributors:
Design lead + corpus author: [Your Name / ORCID link]
Acknowledgments to external reviewers and the open-source Python ecosystem.
7. Future Directions
Codette embodies the transition to truly humane AI—context-aware reasoning with auditability at its core. Next steps may include:
Peer-reviewed reproducibility trials (open notebook science)
Physical companion prototype development (for accessibility/assistive tech)
Community-governed transparency layers—a model ecosystem for next-gen ethical AI.
|