File size: 31,652 Bytes
559af1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
import aiohttp
import json
import torch
import torch.distributed as dist
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from components.adaptive_learning import AdaptiveLearningEnvironment
from components.ai_driven_creativity import AIDrivenCreativity
from components.collaborative_ai import CollaborativeAI
from components.cultural_sensitivity import CulturalSensitivityEngine
from components.data_processing import AdvancedDataProcessor
from components.dynamic_learning import DynamicLearner
from components.ethical_governance import EthicalAIGovernance
from components.explainable_ai import ExplainableAI
from components.feedback_manager import ImprovedFeedbackManager
from components.multimodal_analyzer import MultimodalAnalyzer
from components.neuro_symbolic import NeuroSymbolicEngine
from components.quantum_optimizer import QuantumInspiredOptimizer
from components.real_time_data import RealTimeDataIntegrator
from components.sentiment_analysis import EnhancedSentimentAnalyzer
from components.self_improving_ai import SelfImprovingAI
from components.user_personalization import UserPersonalizer
from models.cognitive_engine import BroaderPerspectiveEngine
from models.elements import Element
from models.healing_system import SelfHealingSystem
from models.safety_system import SafetySystem
from models.user_profiles import UserProfile
from utils.database import Database
from utils.logger import logger
class AICore:
"""Improved core system with cutting-edge capabilities"""
def __init__(self, config_path: str = "config/ai_assistant_config.json"):
self.config = self._load_config(config_path)
self.models = self._initialize_models()
self.cognition = BroaderPerspectiveEngine()
self.self_healing = SelfHealingSystem(self.config)
self.safety_system = SafetySystem()
self.emotional_analyzer = EnhancedSentimentAnalyzer()
self.elements = self._initialize_elements()
self.security_level = 0
self.http_session = aiohttp.ClientSession()
self.database = Database() # Initialize database
self.user_profiles = UserProfile(self.database) # Initialize user profiles
self.feedback_manager = ImprovedFeedbackManager(self.database) # Initialize feedback manager
self.context_manager = AdaptiveLearningEnvironment() # Initialize adaptive learning environment
self.data_fetcher = RealTimeDataIntegrator() # Initialize real-time data fetcher
self.sentiment_analyzer = EnhancedSentimentAnalyzer() # Initialize sentiment analyzer
self.data_processor = AdvancedDataProcessor() # Initialize advanced data processor
self.dynamic_learner = DynamicLearner() # Initialize dynamic learner
self.multimodal_analyzer = MultimodalAnalyzer() # Initialize multimodal analyzer
self.ethical_decision_maker = EthicalAIGovernance() # Initialize ethical decision maker
self.user_personalizer = UserPersonalizer(self.database) # Initialize user personalizer
self.ai_integrator = CollaborativeAI() # Initialize AI integrator
self.neuro_symbolic_engine = NeuroSymbolicEngine() # Initialize neuro-symbolic engine
self.explainable_ai = ExplainableAI() # Initialize explainable AI
self.quantum_inspired_optimizer = QuantumInspiredOptimizer() # Initialize quantum-inspired optimizer
self.cultural_sensitivity_engine = CulturalSensitivityEngine() # Initialize cultural sensitivity engine
self.self_improving_ai = SelfImprovingAI() # Initialize self-improving AI
self.ai_driven_creativity = AIDrivenCreativity() # Initialize AI-driven creativity
self._validate_perspectives()
def _load_config(self, config_path: str) -> dict:
"""Load configuration from a file"""
with open(config_path, 'r') as file:
return json.load(file)
def _initialize_models(self):
"""Initialize models required by the AICore class"""
models = {
"mistralai": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
}
return models
def _initialize_elements(self):
"""Initialize elements with their defense abilities"""
elements = {
"hydrogen": Element("Hydrogen", "H", "Python", ["Lightweight", "Reactive"], ["Combustion"], "evasion"),
"carbon": Element("Carbon", "C", "Java", ["Versatile", "Strong"], ["Bonding"], "adaptability"),
"iron": Element("Iron", "Fe", "C++", ["Durable", "Magnetic"], ["Rusting"], "fortification"),
"silicon": Element("Silicon", "Si", "JavaScript", ["Semiconductor", "Abundant"], ["Doping"], "barrier"),
"oxygen": Element("Oxygen", "O", "Rust", ["Oxidizing", "Life-supporting"], ["Combustion"], "regeneration")
}
return elements
def _validate_perspectives(self):
"""Ensure configured perspectives are valid"""
valid = self.cognition.available_perspectives
invalid = [p for p in self.config["perspectives"] if p not in valid]
if invalid:
logger.warning(f"Removing invalid perspectives: {invalid}")
self.config["perspectives"] = [p for p in self.config["perspectives"] if p in valid]
async def _process_perspectives(self, query: str) -> List[str]:
"""Safely process perspectives using validated methods"""
perspectives = []
for p in self.config["perspectives"]:
try:
method = self.cognition.get_perspective_method(p)
perspectives.append(method(query))
except Exception as e:
logger.error(f"Perspective processing failed: {e}")
return perspectives
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
"""Generate response with advanced capabilities"""
try:
# Initialize temporary modifiers/filters for this query
response_modifiers = []
response_filters = []
# Execute element defenses
for element in self.elements.values():
element.execute_defense_function(self, response_modifiers, response_filters)
# Process perspectives and generate response
perspectives = await self._process_perspectives(query)
model_response = await self._generate_local_model_response(query)
# Apply sentiment analysis
sentiment = self.sentiment_analyzer.detailed_analysis(query)
# Apply modifiers and filters
final_response = model_response
for modifier in response_modifiers:
final_response = modifier(final_response)
for filter_func in response_filters:
final_response = filter_func(final_response)
# Adjust response based on feedback
feedback = self.database.get_latest_feedback(user_id)
if feedback:
final_response = self.feedback_manager.adjust_response_based_on_feedback(final_response, feedback)
# Log user interaction for analytics
self.database.log_interaction(user_id, query, final_response)
# Update context
self.context_manager.update_environment(user_id, {"query": query, "response": final_response})
# Personalize response
final_response = self.user_personalizer.personalize_response(final_response, user_id)
# Apply ethical decision-making framework
final_response = self.ethical_decision_maker.enforce_policies(final_response)
# Explain the decision
explanation = self.explainable_ai.explain_decision(final_response, query)
return {
"insights": perspectives,
"response": final_response,
"sentiment": sentiment,
"security_level": self.security_level,
"health_status": await self.self_healing.check_health(),
"explanation": explanation
}
except Exception as e:
logger.error(f"Response generation failed: {e}")
return {"error": "Processing failed - safety protocols engaged"}
async def _generate_local_model_response(self, query: str) -> str:
"""Generate a response from the local model"""
inputs = self.models['tokenizer'](query, return_tensors='pt')
outputs = self.models['mistralai'].generate(**inputs)
return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True)
async def shutdown(self):
"""Proper async resource cleanup"""
await self.http_session.close()
await self.database.close() # Close the database connection
# Optimization Techniques
def apply_quantization(self):
"""Apply quantization to the model"""
self.models['mistralai'] = torch.quantization.quantize_dynamic(
self.models['mistralai'], {torch.nn.Linear}, dtype=torch.qint8
)
def apply_pruning(self):
"""Apply pruning to the model"""
parameters_to_prune = (
(self.models['mistralai'].transformer.h[i].attn.c_attn, 'weight') for i in range(self.models['mistralai'].config.n_layer)
)
torch.nn.utils.prune.global_unstructured(
parameters_to_prune,
pruning_method=torch.nn.utils.prune.L1Unstructured,
amount=0.4,
)
def apply_mixed_precision_training(self):
"""Enable mixed precision training"""
scaler = torch.cuda.amp.GradScaler()
return scaler
def setup_distributed_training(self):
"""Setup distributed training"""
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK", "0"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
if world_size > 1:
dist.init_process_group("nccl")
torch.cuda.set_device(local_rank)
return world_size, rank, local_rank
def optimize_data_pipeline(self):
"""Optimize data loading and preprocessing pipeline"""
# Example: Using DALI for efficient data loading
import nvidia.dali.pipeline as pipeline
from nvidia.dali.plugin.pytorch import DALIGenericIterator
class ExternalInputIterator:
def __init__(self, batch_size):
self.batch_size = batch_size
def __iter__(self):
self.i = 0
return self
def __next__(self):
self.i += 1
if self.i > 10:
raise StopIteration
return [np.random.rand(3, 224, 224).astype(np.float32) for _ in range(self.batch_size)]
pipe = pipeline.Pipeline(batch_size=32, num_threads=2, device_id=0)
with pipe:
images = pipeline.fn.external_source(source=ExternalInputIterator(32), num_outputs=1)
pipe.set_outputs(images)
self.data_loader = DALIGenericIterator(pipe, ['data'], reader_name='Reader')
def apply_gradient_accumulation(self, optimizer, loss, scaler=None, accumulation_steps=4):
"""Apply gradient accumulation to simulate larger batch sizes"""
if scaler:
scaler.scale(loss).backward()
if (self.step + 1) % accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
loss.backward()
if (self.step + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
def apply_knowledge_distillation(self, teacher_model, student_model, data_loader, optimizer, loss_fn, temperature=1.0, alpha=0.5):
"""Apply knowledge distillation from teacher model to student model"""
student_model.train()
teacher_model.eval()
for data in data_loader:
inputs, labels = data
inputs, labels = inputs.to(self.device), labels.to(self.device)
with torch.no_grad():
teacher_outputs = teacher_model(inputs)
student_outputs = student_model(inputs)
loss = alpha * loss_fn(student_outputs, labels) + (1 - alpha) * loss_fn(student_outputs / temperature, teacher_outputs / temperature)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def monitor_performance(self):
"""Monitor and profile performance"""
from torch.profiler import profile, record_function, ProfilerActivity
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof:
with record_function("model_inference"):
self.generate_response("Sample query", 1)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
def apply_vector_search(self, embeddings, query_embedding, top_k=5):
"""Apply vector search to find the most similar embeddings"""
from sklearn.metrics.pairwise import cosine_similarity
similarities = cosine_similarity(query_embedding, embeddings)
top_k_indices = similarities.argsort()[0][-top_k:]
return top_k_indices
def apply_prompt_engineering(self, prompt):
"""Apply prompt engineering to improve model responses"""
engineered_prompt = f"Please provide a detailed and informative response to the following query: {prompt}"
return engineered_prompt
def optimize_model(self):
"""Optimize the model using various techniques"""
self.apply_quantization()
self.apply_pruning()
scaler = self.apply_mixed_precision_training()
world_size, rank, local_rank = self.setup_distributed_training()
self.optimize_data_pipeline()
self.monitor_performance()
# Example usage of gradient accumulation
optimizer = torch.optim.Adam(self.models['mistralai'].parameters(), lr=1e-4)
for step, (inputs, labels) in enumerate(self.data_loader):
self.step = step
loss = self.models['mistralai'](inputs, labels)
self.apply_gradient_accumulation(optimizer, loss, scaler)
# Example usage of knowledge distillation
teacher_model = AutoModelForCausalLM.from_pretrained("teacher_model_path")
student_model = AutoModelForCausalLM.from_pretrained("student_model_path")
loss_fn = torch.nn.CrossEntropyLoss()
self.apply_knowledge_distillation(teacher_model, student_model, self.data_loader, optimizer, loss_fn)
# Example usage of vector search
embeddings = self.models['mistralai'].get_input_embeddings().weight.data.cpu().numpy()
query_embedding = self.models['mistralai'].get_input_embeddings()(torch.tensor([self.models['tokenizer'].encode("query")])).cpu().numpy()
top_k_indices = self.apply_vector_search(embeddings, query_embedding)
print(f"Top {top_k} similar embeddings indices: {top_k_indices}")
# Example usage of prompt engineering
prompt = "What is the capital of France?"
engineered_prompt = self.apply_prompt_engineering(prompt)
print(f"Engineered prompt: {engineered_prompt}")
if __name__ == "__main__":
ai_core = AICore(config_path="config/ai_assistant_config.json")
ai_core.optimize_model()
import aiohttp
import json
import torch
import torch.distributed as dist
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from components.adaptive_learning import AdaptiveLearningEnvironment
from components.ai_driven_creativity import AIDrivenCreativity
from components.collaborative_ai import CollaborativeAI
from components.cultural_sensitivity import CulturalSensitivityEngine
from components.data_processing import AdvancedDataProcessor
from components.dynamic_learning import DynamicLearner
from components.ethical_governance import EthicalAIGovernance
from components.explainable_ai import ExplainableAI
from components.feedback_manager import ImprovedFeedbackManager
from components.multimodal_analyzer import MultimodalAnalyzer
from components.neuro_symbolic import NeuroSymbolicEngine
from components.quantum_optimizer import QuantumInspiredOptimizer
from components.real_time_data import RealTimeDataIntegrator
from components.sentiment_analysis import EnhancedSentimentAnalyzer
from components.self_improving_ai import SelfImprovingAI
from components.user_personalization import UserPersonalizer
from models.cognitive_engine import BroaderPerspectiveEngine
from models.elements import Element
from models.healing_system import SelfHealingSystem
from models.safety_system import SafetySystem
from models.user_profiles import UserProfile
from utils.database import Database
from utils.logger import logger
class AICore:
"""Improved core system with cutting-edge capabilities"""
def __init__(self, config_path: str = "config/ai_assistant_config.json"):
self.config = self._load_config(config_path)
self.models = self._initialize_models()
self.cognition = BroaderPerspectiveEngine()
self.self_healing = SelfHealingSystem(self.config)
self.safety_system = SafetySystem()
self.emotional_analyzer = EnhancedSentimentAnalyzer()
self.elements = self._initialize_elements()
self.security_level = 0
self.http_session = aiohttp.ClientSession()
self.database = Database() # Initialize database
self.user_profiles = UserProfile(self.database) # Initialize user profiles
self.feedback_manager = ImprovedFeedbackManager(self.database) # Initialize feedback manager
self.context_manager = AdaptiveLearningEnvironment() # Initialize adaptive learning environment
self.data_fetcher = RealTimeDataIntegrator() # Initialize real-time data fetcher
self.sentiment_analyzer = EnhancedSentimentAnalyzer() # Initialize sentiment analyzer
self.data_processor = AdvancedDataProcessor() # Initialize advanced data processor
self.dynamic_learner = DynamicLearner() # Initialize dynamic learner
self.multimodal_analyzer = MultimodalAnalyzer() # Initialize multimodal analyzer
self.ethical_decision_maker = EthicalAIGovernance() # Initialize ethical decision maker
self.user_personalizer = UserPersonalizer(self.database) # Initialize user personalizer
self.ai_integrator = CollaborativeAI() # Initialize AI integrator
self.neuro_symbolic_engine = NeuroSymbolicEngine() # Initialize neuro-symbolic engine
self.explainable_ai = ExplainableAI() # Initialize explainable AI
self.quantum_inspired_optimizer = QuantumInspiredOptimizer() # Initialize quantum-inspired optimizer
self.cultural_sensitivity_engine = CulturalSensitivityEngine() # Initialize cultural sensitivity engine
self.self_improving_ai = SelfImprovingAI() # Initialize self-improving AI
self.ai_driven_creativity = AIDrivenCreativity() # Initialize AI-driven creativity
self._validate_perspectives()
def _load_config(self, config_path: str) -> dict:
"""Load configuration from a file"""
with open(config_path, 'r') as file:
return json.load(file)
def _initialize_models(self):
"""Initialize models required by the AICore class"""
models = {
"mistralai": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
}
return models
def _initialize_elements(self):
"""Initialize elements with their defense abilities"""
elements = {
"hydrogen": Element("Hydrogen", "H", "Python", ["Lightweight", "Reactive"], ["Combustion"], "evasion"),
"carbon": Element("Carbon", "C", "Java", ["Versatile", "Strong"], ["Bonding"], "adaptability"),
"iron": Element("Iron", "Fe", "C++", ["Durable", "Magnetic"], ["Rusting"], "fortification"),
"silicon": Element("Silicon", "Si", "JavaScript", ["Semiconductor", "Abundant"], ["Doping"], "barrier"),
"oxygen": Element("Oxygen", "O", "Rust", ["Oxidizing", "Life-supporting"], ["Combustion"], "regeneration")
}
return elements
def _validate_perspectives(self):
"""Ensure configured perspectives are valid"""
valid = self.cognition.available_perspectives
invalid = [p for p in self.config["perspectives"] if p not in valid]
if invalid:
logger.warning(f"Removing invalid perspectives: {invalid}")
self.config["perspectives"] = [p for p in self.config["perspectives"] if p in valid]
async def _process_perspectives(self, query: str) -> List[str]:
"""Safely process perspectives using validated methods"""
perspectives = []
for p in self.config["perspectives"]:
try:
method = self.cognition.get_perspective_method(p)
perspectives.append(method(query))
except Exception as e:
logger.error(f"Perspective processing failed: {e}")
return perspectives
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
"""Generate response with advanced capabilities"""
try:
# Initialize temporary modifiers/filters for this query
response_modifiers = []
response_filters = []
# Execute element defenses
for element in self.elements.values():
element.execute_defense_function(self, response_modifiers, response_filters)
# Process perspectives and generate response
perspectives = await self._process_perspectives(query)
model_response = await self._generate_local_model_response(query)
# Apply sentiment analysis
sentiment = self.sentiment_analyzer.detailed_analysis(query)
# Apply modifiers and filters
final_response = model_response
for modifier in response_modifiers:
final_response = modifier(final_response)
for filter_func in response_filters:
final_response = filter_func(final_response)
# Adjust response based on feedback
feedback = self.database.get_latest_feedback(user_id)
if feedback:
final_response = self.feedback_manager.adjust_response_based_on_feedback(final_response, feedback)
# Log user interaction for analytics
self.database.log_interaction(user_id, query, final_response)
# Update context
self.context_manager.update_environment(user_id, {"query": query, "response": final_response})
# Personalize response
final_response = self.user_personalizer.personalize_response(final_response, user_id)
# Apply ethical decision-making framework
final_response = self.ethical_decision_maker.enforce_policies(final_response)
# Explain the decision
explanation = self.explainable_ai.explain_decision(final_response, query)
return {
"insights": perspectives,
"response": final_response,
"sentiment": sentiment,
"security_level": self.security_level,
"health_status": await self.self_healing.check_health(),
"explanation": explanation
}
except Exception as e:
logger.error(f"Response generation failed: {e}")
return {"error": "Processing failed - safety protocols engaged"}
async def _generate_local_model_response(self, query: str) -> str:
"""Generate a response from the local model"""
inputs = self.models['tokenizer'](query, return_tensors='pt')
outputs = self.models['mistralai'].generate(**inputs)
return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True)
async def shutdown(self):
"""Proper async resource cleanup"""
await self.http_session.close()
await self.database.close() # Close the database connection
# Optimization Techniques
def apply_quantization(self):
"""Apply quantization to the model"""
self.models['mistralai'] = torch.quantization.quantize_dynamic(
self.models['mistralai'], {torch.nn.Linear}, dtype=torch.qint8
)
def apply_pruning(self):
"""Apply pruning to the model"""
parameters_to_prune = (
(self.models['mistralai'].transformer.h[i].attn.c_attn, 'weight') for i in range(self.models['mistralai'].config.n_layer)
)
torch.nn.utils.prune.global_unstructured(
parameters_to_prune,
pruning_method=torch.nn.utils.prune.L1Unstructured,
amount=0.4,
)
def apply_mixed_precision_training(self):
"""Enable mixed precision training"""
scaler = torch.cuda.amp.GradScaler()
return scaler
def setup_distributed_training(self):
"""Setup distributed training"""
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK", "0"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
if world_size > 1:
dist.init_process_group("nccl")
torch.cuda.set_device(local_rank)
return world_size, rank, local_rank
def optimize_data_pipeline(self):
"""Optimize data loading and preprocessing pipeline"""
# Example: Using DALI for efficient data loading
import nvidia.dali.pipeline as pipeline
from nvidia.dali.plugin.pytorch import DALIGenericIterator
class ExternalInputIterator:
def __init__(self, batch_size):
self.batch_size = batch_size
def __iter__(self):
self.i = 0
return self
def __next__(self):
self.i += 1
if self.i > 10:
raise StopIteration
return [np.random.rand(3, 224, 224).astype(np.float32) for _ in range(self.batch_size)]
pipe = pipeline.Pipeline(batch_size=32, num_threads=2, device_id=0)
with pipe:
images = pipeline.fn.external_source(source=ExternalInputIterator(32), num_outputs=1)
pipe.set_outputs(images)
self.data_loader = DALIGenericIterator(pipe, ['data'], reader_name='Reader')
def apply_gradient_accumulation(self, optimizer, loss, scaler=None, accumulation_steps=4):
"""Apply gradient accumulation to simulate larger batch sizes"""
if scaler:
scaler.scale(loss).backward()
if (self.step + 1) % accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
loss.backward()
if (self.step + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
def apply_knowledge_distillation(self, teacher_model, student_model, data_loader, optimizer, loss_fn, temperature=1.0, alpha=0.5):
"""Apply knowledge distillation from teacher model to student model"""
student_model.train()
teacher_model.eval()
for data in data_loader:
inputs, labels = data
inputs, labels = inputs.to(self.device), labels.to(self.device)
with torch.no_grad():
teacher_outputs = teacher_model(inputs)
student_outputs = student_model(inputs)
loss = alpha * loss_fn(student_outputs, labels) + (1 - alpha) * loss_fn(student_outputs / temperature, teacher_outputs / temperature)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def monitor_performance(self):
"""Monitor and profile performance"""
from torch.profiler import profile, record_function, ProfilerActivity
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof:
with record_function("model_inference"):
self.generate_response("Sample query", 1)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
def apply_vector_search(self, embeddings, query_embedding, top_k=5):
"""Apply vector search to find the most similar embeddings"""
from sklearn.metrics.pairwise import cosine_similarity
similarities = cosine_similarity(query_embedding, embeddings)
top_k_indices = similarities.argsort()[0][-top_k:]
return top_k_indices
def apply_prompt_engineering(self, prompt):
"""Apply prompt engineering to improve model responses"""
engineered_prompt = f"Please provide a detailed and informative response to the following query: {prompt}"
return engineered_prompt
def optimize_model(self):
"""Optimize the model using various techniques"""
self.apply_quantization()
self.apply_pruning()
scaler = self.apply_mixed_precision_training()
world_size, rank, local_rank = self.setup_distributed_training()
self.optimize_data_pipeline()
self.monitor_performance()
# Example usage of gradient accumulation
optimizer = torch.optim.Adam(self.models['mistralai'].parameters(), lr=1e-4)
for step, (inputs, labels) in enumerate(self.data_loader):
self.step = step
loss = self.models['mistralai'](inputs, labels)
self.apply_gradient_accumulation(optimizer, loss, scaler)
# Example usage of knowledge distillation
teacher_model = AutoModelForCausalLM.from_pretrained("teacher_model_path")
student_model = AutoModelForCausalLM.from_pretrained("student_model_path")
loss_fn = torch.nn.CrossEntropyLoss()
self.apply_knowledge_distillation(teacher_model, student_model, self.data_loader, optimizer, loss_fn)
# Example usage of vector search
embeddings = self.models['mistralai'].get_input_embeddings().weight.data.cpu().numpy()
query_embedding = self.models['mistralai'].get_input_embeddings()(torch.tensor([self.models['tokenizer'].encode("query")])).cpu().numpy()
top_k_indices = self.apply_vector_search(embeddings, query_embedding)
print(f"Top {top_k} similar embeddings indices: {top_k_indices}")
# Example usage of prompt engineering
prompt = "What is the capital of France?"
engineered_prompt = self.apply_prompt_engineering(prompt)
print(f"Engineered prompt: {engineered_prompt}")
if __name__ == "__main__":
ai_core = AICore(config_path="config/ai_assistant_config.json")
ai_core.optimize_model()
|