File size: 10,462 Bytes
559af1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# app.py
import sys
import traceback
import gradio as gr
import asyncio
from datetime import datetime
from aiohttp import web
from aiohttp.web import Request, Response, json_response
from botbuilder.core import (
BotFrameworkAdapterSettings,
TurnContext,
BotFrameworkAdapter,
)
from botbuilder.core.integration import aiohttp_error_middleware
from botbuilder.schema import Activity, ActivityTypes
from bot import MyBot
from config import DefaultConfig
from ai_core import AICore
from aegis_integration import AegisBridge
from aegis_integration.config import AEGIS_CONFIG
from aegis_integration.routes import register_aegis_endpoints
import numpy as np
import logging
from typing import Dict, Any, Tuple
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
CONFIG = DefaultConfig()
# Initialize AI Core and AEGIS
ai_core = AICore()
aegis_bridge = AegisBridge(ai_core, AEGIS_CONFIG)
ai_core.set_aegis_bridge(aegis_bridge)
# Force fallback to gpt2 for text generation
ai_core.model_id = 'gpt2'
# Bot Framework Setup
SETTINGS = BotFrameworkAdapterSettings(CONFIG.APP_ID, CONFIG.APP_PASSWORD)
ADAPTER = BotFrameworkAdapter(SETTINGS)
# Create Gradio interface with AEGIS integration
app = gr.Interface(
fn=lambda x: ai_core.generate_text(x),
inputs="text",
outputs=[
gr.Textbox(label="Response"),
gr.JSON(label="AEGIS Analysis", visible=True)
],
title="Codette with AEGIS",
description="An ethical AI assistant enhanced with AEGIS analysis"
)
class CodetteGradioApp:
def __init__(self, ai_core: AICore):
self.ai_core = ai_core
self.chat_history = []
def process_message(self, message: str, history: list, cocoon_mode: bool = False) -> Tuple[str, list]:
"""Process a message and update chat history, with optional cocoon-powered creativity"""
try:
# Generate response (cocoon-powered if enabled)
if cocoon_mode:
# Ensure cocoons are loaded
if not hasattr(self.ai_core, 'cocoon_data') or not self.ai_core.cocoon_data:
self.ai_core.load_cocoon_data()
response = self.ai_core.remix_and_randomize_response(message, cocoon_mode=True)
else:
response = self.ai_core.generate_text(message)
try:
# Analyze sentiment
sentiment = self.ai_core.analyze_sentiment(message)
label = sentiment.get('label', '').upper()
score = sentiment.get('score', 0.0)
# Use transformers to generate a unique, sentiment-aware reply
if label == 'POS':
prompt = f"The user said something positive: '{message}'. Respond in a cheerful, encouraging, and unique way."
elif label == 'NEG':
prompt = f"The user said something negative: '{message}'. Respond with empathy, support, and a unique comforting message."
elif label == 'NEU':
prompt = f"The user said something neutral: '{message}'. Respond in a thoughtful, neutral, and unique way."
else:
prompt = f"The user's sentiment is unclear: '{message}'. Respond in a curious, open-minded, and unique way."
char_response = self.ai_core.generate_text(prompt, max_length=60)
sentiment_info = f"\n[Sentiment: {label} ({score:.2f})] {char_response}"
except Exception as sent_e:
logger.error(f"Sentiment analysis error: {sent_e}")
sentiment_info = "\n[Sentiment: error (0.00)] 🤖 Sorry, I couldn't analyze the sentiment."
# Update history in Gradio 'messages' format
history = history + [
{"role": "user", "content": message},
{"role": "assistant", "content": response + sentiment_info}
]
return "", history
except Exception as e:
logger.error(f"Error processing message: {e}")
# Add error as assistant message
history = history + [
{"role": "user", "content": message},
{"role": "assistant", "content": f"Error: {str(e)}"}
]
return "", history
def analyze_text(self, text: str):
"""Perform comprehensive text analysis"""
try:
# Get sentiment
sentiment = self.ai_core.analyze_sentiment(text)
# Get embeddings
embeddings = self.ai_core.get_embeddings(text)
if embeddings:
# Convert embeddings to 2D visualization
embedding_viz = self._visualize_embeddings(embeddings)
else:
embedding_viz = None
# Generate creative expansion
expansion = self.ai_core.generate_text(
f"Creative expansion of the concept: {text}",
max_length=150
)
return (
f"Sentiment: {sentiment['label']} (confidence: {sentiment['score']:.2f})",
embedding_viz,
expansion
)
except Exception as e:
logger.error(f"Error in text analysis: {e}")
return (
"Error analyzing sentiment",
None,
str(e)
)
def _visualize_embeddings(self, embeddings: list) -> np.ndarray:
"""Create a simple 2D visualization of embeddings"""
# Convert to numpy array and reshape to 2D
emb_array = np.array(embeddings)
if len(emb_array.shape) > 2:
emb_array = emb_array.reshape(-1, emb_array.shape[-1])
# Simple dimensionality reduction (mean across dimensions)
viz_data = emb_array.mean(axis=1)
# Create a simple heatmap-style visualization
size = int(np.sqrt(len(viz_data)))
heatmap = viz_data[:size*size].reshape(size, size)
return heatmap
# Create Gradio Interface
gradio_app = CodetteGradioApp(ai_core)
# Create the Bot
BOT = MyBot(ai_core)
# Bot Framework message handler
async def messages(req: Request) -> Response:
if "application/json" in req.headers["Content-Type"]:
body = await req.json()
else:
return Response(status=415)
activity = Activity().deserialize(body)
auth_header = req.headers["Authorization"] if "Authorization" in req.headers else ""
response = await ADAPTER.process_activity(activity, auth_header, BOT.on_turn)
if response:
return json_response(data=response.body, status=response.status)
return Response(status=201)
# Create Gradio interface
def create_gradio_interface():
with gr.Blocks(title="Codette AI Assistant", theme="default") as interface:
gr.Markdown("""
# 🤖 Codette AI Assistant
A sophisticated AI assistant powered by Hugging Face models.
## Features:
- 💬 Interactive Chat
- 📊 Sentiment Analysis
- 🧠 Semantic Understanding
- 🎨 Creative Generation
""")
with gr.Tabs():
# Chat Interface
with gr.Tab("Chat"):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
height=400,
type="messages"
)
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
container=False
)
with gr.Row():
cocoon_toggle = gr.Checkbox(label="Enable Cocoon-Powered Creativity", value=False)
txt.submit(
gradio_app.process_message,
[txt, chatbot, cocoon_toggle],
[txt, chatbot]
)
clear = gr.Button("Clear")
clear.click(lambda: [], None, chatbot)
# Analysis Interface
with gr.Tab("Analysis"):
with gr.Row():
with gr.Column():
analysis_input = gr.Textbox(
label="Text to Analyze",
placeholder="Enter text for comprehensive analysis...",
lines=3
)
analyze_btn = gr.Button("Analyze")
with gr.Column():
sentiment_output = gr.Textbox(label="Sentiment Analysis")
embedding_output = gr.Plot(label="Semantic Embedding Visualization")
expansion_output = gr.Textbox(
label="Creative Expansion",
lines=3
)
analyze_btn.click(
gradio_app.analyze_text,
inputs=analysis_input,
outputs=[
sentiment_output,
embedding_output,
expansion_output
]
)
return interface
# Main app setup
async def main():
# Set up aiohttp web app
app = web.Application(middlewares=[aiohttp_error_middleware])
app.router.add_post("/api/messages", messages)
# Launch Gradio interface in a separate thread
interface = create_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
auth=None,
favicon_path=None
)
# Start the web app
runner = web.AppRunner(app)
await runner.setup()
await web.TCPSite(runner, "0.0.0.0", 3978).start()
# Keep the server running
while True:
await asyncio.sleep(3600) # Sleep for an hour
if __name__ == "__main__":
try:
# Run the async main function
asyncio.run(main())
except Exception as error:
logger.error(f"Application error: {error}")
raise error
|