File size: 11,107 Bytes
559af1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import aiohttp
import json
import asyncio  # Added for async main execution
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from components.adaptive_learning import AdaptiveLearningEnvironment
from components.ai_driven_creativity import AIDrivenCreativity
from components.collaborative_ai import CollaborativeAI
from components.cultural_sensitivity import CulturalSensitivityEngine
from components.data_processing import AdvancedDataProcessor
from components.dynamic_learning import DynamicLearner
from components.ethical_governance import EthicalAIGovernance
from components.explainable_ai import ExplainableAI
from components.feedback_manager import ImprovedFeedbackManager
from components.multimodal_analyzer import MultimodalAnalyzer
from components.neuro_symbolic import NeuroSymbolicEngine
from components.quantum_optimizer import QuantumInspiredOptimizer
from components.real_time_data import RealTimeDataIntegrator
from components.sentiment_analysis import EnhancedSentimentAnalyzer  # Fixed possible typo
from components.self_improving_ai import SelfImprovingAI
from components.user_personalization import UserPersonalizer
from models.cognitive_engine import BroaderPerspectiveEngine
from models.elements import Element
from models.healing_system import SelfHealingSystem
from models.safety_system import SafetySystem
from models.user_profiles import UserProfile
from utils.database import Database
from utils.logger import logger

class AICore:
    """Improved core system with cutting-edge capabilities"""
    def __init__(self, config_path: str = "config.json"):
        self.config = self._load_config(config_path)
        self.models = self._initialize_models()
        self.cognition = BroaderPerspectiveEngine()
        self.self_healing = SelfHealingSystem(self.config)
        self.safety_system = SafetySystem()
        self.sentiment_analyzer = EnhancedSentimentAnalyzer()  # Single instance
        self.elements = self._initialize_elements()
        self.security_level = 0
        self.http_session = aiohttp.ClientSession()
        self.database = Database()
        self.user_profiles = UserProfile(self.database)
        self.feedback_manager = ImprovedFeedbackManager(self.database)
        self.context_manager = AdaptiveLearningEnvironment()
        self.data_fetcher = RealTimeDataIntegrator()
        self.data_processor = AdvancedDataProcessor()
        self.dynamic_learner = DynamicLearner()
        self.multimodal_analyzer = MultimodalAnalyzer()
        self.ethical_decision_maker = EthicalAIGovernance()
        self.user_personalizer = UserPersonalizer(self.database)
        self.ai_integrator = CollaborativeAI()
        self.neuro_symbolic_engine = NeuroSymbolicEngine()
        self.explainable_ai = ExplainableAI()
        self.quantum_inspired_optimizer = QuantumInspiredOptimizer()
        self.cultural_sensitivity_engine = CulturalSensitivityEngine()
        self.self_improving_ai = SelfImprovingAI()
        self.ai_driven_creativity = AIDrivenCreativity()
        self._validate_perspectives()

    # ... (keep other methods the same until _generate_local_model_response)

    def _generate_local_model_response(self, query: str) -> str:
        """Generate a response from the local model (synchronous)"""
        inputs = self.models*An external link was removed to protect your privacy.*
        outputs = self.models['mistralai'].generate(
            **inputs,
            max_new_tokens=150,
            temperature=0.7
        )
        return self.models['tokenizer'].decode(outputs, skip_special_tokens=True)

    async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
        """Generate response with advanced capabilities"""
        try:
            response_modifiers = []
            response_filters = []

            for element in self.elements.values():
                element.execute_defense_function(self, response_modifiers, response_filters)

            perspectives = await self._process_perspectives(query)
            model_response = self._generate_local_model_response(query)  # No await needed

            sentiment = self.sentiment_analyzer.detailed_analysis(query)

            final_response = model_response
            for modifier in response_modifiers:
                final_response = modifier(final_response)
            for filter_func in response_filters:
                final_response = filter_func(final_response)

            # Await async database calls
            feedback = await self.database.get_latest_feedback(user_id)
            if feedback:
                final_response = self.feedback_manager.adjust_response_based_on_feedback(
                    final_response, feedback
                )

            await self.database.log_interaction(user_id, query, final_response)

            # Await async context update if needed
            await self.context_manager.update_environment(
                user_id, {"query": query, "response": final_response}
            )

            # Await personalization if async
            final_response = await self.user_personalizer.personalize_response(
                final_response, user_id
            )

            final_response = await self.ethical_decision_maker.enforce_policies(
                final_response
            )

            explanation = await self.explainable_ai.explain_decision(
                final_response, query
            )

            return {
                "insights": perspectives,
                "response": final_response,
                "sentiment": sentiment,
                "security_level": self.security_level,
                "health_status": await self.self_healing.check_health(),
                "explanation": explanation,
                "emotional_adaptation": await self._emotional_adaptation(query),
                "predictive_analytics": await self._predictive_analytics(query),
                "holistic_health_monitoring": await self._holistic_health_monitoring(query)
            }
        except Exception as e:
            logger.error(f"Response generation failed: {e}")
            return {"error": "Processing failed - safety protocols engaged"}

    async def _emotional_adaptation(self, query: str) -> str:
        """Adapt responses based on user's emotional state"""
        sentiment_result = self.sentiment_analyzer.analyze(query)
        sentiment = sentiment_result['score'] if sentiment_result['label'] == 'POSITIVE' else -sentiment_result['score']
        if sentiment < -0.5:
            return "I understand this might be frustrating. Let's work through it together."
        elif sentiment > 0.5:
            return "Great to hear! Let's keep the positive momentum going."
        else:
            return "I'm here to help with whatever you need."

    # ... (rest of the methods remain the same)

    def analyze_identity(self, micro_generations: List[Dict[str, str]], informational_states: List[Dict[str, str]], perspectives: List[str], quantum_analogies: Dict[str, Any], philosophical_context: Dict[str, bool]) -> Dict[str, Any]:
        """

        A function that calculates and analyzes identity as a fractal and recursive process.

        

        Parameters:

        - micro_generations (List[Dict[str, str]]): List of micro-generations reflecting state changes in the identity system.

        - informational_states (List[Dict[str, str]]): Array of informational states derived from previous generations.

        - perspectives (List[str]): Views on the identity based on original components and current system.

        - quantum_analogies (Dict[str, Any]): Quantum analogies used in reasoning about identity.

        - philosophical_context (Dict[str, bool]): Philosophical context of identity.

        

        Returns:

        - Dict[str, Any]: Analysis results.

        """
        
        def calculate_fractal_dimension(states: List[Dict[str, str]]) -> float:
            # Example calculation of fractal dimension based on state changes
            return len(states) ** 0.5
        
        def recursive_analysis(states: List[Dict[str, str]], depth: int = 0) -> Dict[str, Any]:
            # Example recursive analysis of states
            if depth == 0 or not states:
                return {"depth": depth, "states": states}
            return {
                "depth": depth,
                "states": states,
                "sub_analysis": recursive_analysis(states[:-1], depth - 1)
            }
        
        def analyze_perspectives(perspectives: List[str]) -> Dict[str, Any]:
            # Example analysis of perspectives
            return {
                "count": len(perspectives),
                "unique_perspectives": list(set(perspectives))
            }
        
        def apply_quantum_analogies(analogies: Dict[str, Any]) -> str:
            # Example application of quantum analogies
            if analogies.get("entanglement"):
                return "Entanglement analogy applied."
            return "No quantum analogy applied."
        
        def philosophical_analysis(context: Dict[str, bool]) -> str:
            # Example philosophical analysis
            if context.get("continuity") and context.get("emergent"):
                return "Identity is viewed as a continuous and evolving process."
            return "Identity analysis based on provided philosophical context."
        
        # Calculate fractal dimension of informational states
        fractal_dimension = calculate_fractal_dimension(informational_states)
        
        # Perform recursive analysis of micro-generations
        recursive_results = recursive_analysis(micro_generations, depth=3)
        
        # Analyze perspectives
        perspectives_analysis = analyze_perspectives(perspectives)
        
        # Apply quantum analogies
        quantum_analysis = apply_quantum_analogies(quantum_analogies)
        
        # Perform philosophical analysis
        philosophical_results = philosophical_analysis(philosophical_context)
        
        # Compile analysis results
        analysis_results = {
            "fractal_dimension": fractal_dimension,
            "recursive_analysis": recursive_results,
            "perspectives_analysis": perspectives_analysis,
            "quantum_analysis": quantum_analysis,
            "philosophical_results": philosophical_results
        }
        
        return analysis_results

async def main():
    ai_core = AICore()
    try:
        while True:
            query = input("User: ")
            if query.lower() in ["exit", "quit"]:
                break
            response = await ai_core.generate_response(query, user_id=123)
            print(f"AI Core: {response}")
    finally:
        await ai_core.shutdown()

if __name__ == "__main__":
    asyncio.run(main())