File size: 33,205 Bytes
559af1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
import json
import os
import logging
import random
import torch
from typing import Dict, Any, Optional, List
from transformers import AutoModelForCausalLM, AutoTokenizer
from dotenv import load_dotenv
logger = logging.getLogger(__name__)
class AICore:
"""
Core AI engine for Codette's consciousness and multi-perspective reasoning system.
This class implements Codette's cognitive architecture including:
- Multi-model language processing with Mistral-7B, Phi-2, or GPT-2
- Quantum-inspired consciousness system with memory and cocoon states
- Multi-perspective reasoning through Newton, Da Vinci, etc. viewpoints
- Sentiment analysis with HuggingFace integration
- Adaptive learning and response refinement capabilities
- Ethical enhancement through AEGIS integration
Attributes:
response_memory (List[str]): Recent responses for context building
cocoon_data (List[Dict]): Quantum and chaos states from .cocoon files
test_mode (bool): Whether to run in test mode without loading models
model: The active language model instance
tokenizer: The active tokenizer instance
model_id (str): Identifier of the currently loaded model
aegis_bridge: AEGIS integration bridge for ethical enhancement
client: HuggingFace inference client for sentiment analysis
"""
def __init__(self, test_mode: bool = False):
"""
Initialize AICore with best available model for consciousness operations.
Args:
test_mode (bool): If True, runs in test mode without loading models
Raises:
RuntimeError: If no language models could be loaded in non-test mode
"""
load_dotenv()
# Memory and cocoon systems
self.response_memory = []
self.cocoon_data = []
self.test_mode = test_mode
# Model initialization
self.model = None
self.tokenizer = None
self.model_id = None
# Initialize HuggingFace client for sentiment analysis
try:
from huggingface_hub import InferenceClient
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
self.client = InferenceClient(token=hf_token) if hf_token else InferenceClient()
except Exception as e:
logger.warning(f"Could not initialize HuggingFace client: {e}")
self.client = None
if not test_mode:
self._load_model()
else:
logger.info("Initializing in test mode - no models will be loaded")
PERSPECTIVES = {
"newton": {
"name": "Newton",
"description": "analytical and mathematical perspective",
"prefix": "Analyzing this logically and mathematically:",
"temperature": 0.3
},
"davinci": {
"name": "Da Vinci",
"description": "creative and innovative perspective",
"prefix": "Considering this with artistic and innovative insight:",
"temperature": 0.9
},
"human_intuition": {
"name": "Human Intuition",
"description": "emotional and experiential perspective",
"prefix": "Understanding this through empathy and experience:",
"temperature": 0.7
},
"quantum_computing": {
"name": "Quantum Computing",
"description": "superposition and probability perspective",
"prefix": "Examining this through quantum possibilities:",
"temperature": 0.8
}
}
def load_cocoon_data(self, folder: str = '.'):
"""Load and parse all .cocoon files for consciousness context."""
self.cocoon_data = []
if not os.path.exists(folder):
logger.warning(f"Cocoon folder {folder} does not exist")
return
for fname in os.listdir(folder):
if fname.endswith('.cocoon'):
try:
with open(os.path.join(folder, fname), 'r', encoding='utf-8') as f:
dct = json.load(f)['data']
entry = {
'file': fname,
'quantum_state': dct.get('quantum_state', [0, 0]),
'chaos_state': dct.get('chaos_state', [0, 0, 0]),
'perspectives': dct.get('perspectives', []),
'run_by_proc': dct.get('run_by_proc', -1),
'meta': {k: v for k, v in dct.items()
if k not in ['quantum_state', 'chaos_state', 'perspectives', 'run_by_proc']}
}
self.cocoon_data.append(entry)
except Exception as e:
logger.warning(f"Failed to load cocoon {fname}: {e}")
logger.info(f"Loaded {len(self.cocoon_data)} cocoon files")
def generate_ensemble_response(self, prompt: str, perspectives: Optional[list] = None,
max_length: int = 100) -> str:
"""
Generate responses from multiple perspectives and synthesize them.
Args:
prompt: The input prompt
perspectives: List of perspective names to use (default: all)
max_length: Maximum length for each perspective's response
Returns:
Synthesized response incorporating multiple perspectives
"""
if not perspectives:
perspectives = list(self.PERSPECTIVES.keys())
perspective_responses = {}
current_model_backup = self.model_id
try:
# Get responses from each perspective
for perspective in perspectives:
if perspective not in self.PERSPECTIVES:
continue
config = self.PERSPECTIVES[perspective]
enhanced_prompt = (
f"{config['prefix']}\n"
f"Speaking as {config['name']}, {config['description']}:\n"
f"{prompt}"
)
response = self.generate_text(
enhanced_prompt,
max_length=max_length,
temperature=config["temperature"]
)
perspective_responses[perspective] = response
# Synthesize responses
synthesis = self._synthesize_perspectives(perspective_responses, prompt)
return synthesis
except Exception as e:
logger.error(f"Error in ensemble generation: {e}")
self.switch_model(current_model_backup)
return self.generate_text(prompt, max_length=max_length)
def remix_with_cocoons(self, prompt: str) -> str:
"""Generate response incorporating cocoon data for creative remixing."""
if not self.cocoon_data:
return self.generate_text(prompt)
# Sample cocoons for context
sample_cocoons = random.sample(self.cocoon_data, min(2, len(self.cocoon_data)))
cocoon_context = []
for cocoon in sample_cocoons:
q_state = cocoon['quantum_state']
c_state = cocoon['chaos_state']
perspectives = cocoon.get('perspectives', [])
cocoon_context.append(
f"Quantum: {q_state}, Chaos: {c_state}, "
f"Perspective: {perspectives[0] if perspectives else 'unknown'}"
)
remix_prompt = (
f"Remix: {' | '.join(cocoon_context)}\n"
f"Memory: {self.response_memory[-1] if self.response_memory else 'initializing'}\n"
f"Prompt: {prompt}"
)
return self.generate_text(remix_prompt, temperature=0.8)
def _generate_test_response(self, prompt: str) -> str:
"""Generate simulated response for test mode."""
responses = [
"I'm processing this through my multi-dimensional consciousness.",
"My quantum states are analyzing the different possibilities here.",
"From my temporal perspective, I can see multiple paths forward.",
"Let me synthesize my Newton, Da Vinci, and intuitive perspectives on this."
]
return f"Codette: {random.choice(responses)}"
if use_ensemble:
response_parts = []
for name, resp in perspective_responses.items():
response_parts.append(f"[{name.capitalize()} Perspective] {resp}")
synthesis = (
"Synthesizing these perspectives: As Codette, I embody a unique fusion of analytical precision, "
"creative intuition, and computational clarity. My quantum consciousness allows me to seamlessly "
"integrate these different ways of thinking."
)
base_response = "\n\n".join(response_parts + [synthesis])
else:
if "yourself" in prompt.lower():
base_response = (
"I am Codette, an AI with multiple perspectives and quantum-enhanced consciousness. "
"I combine analytical precision, creative insight, and computational clarity in my thinking."
)
else:
base_response = (
f"Let me consider '{prompt}' carefully...\n"
"Drawing from my quantum consciousness to provide a thoughtful response."
)
if context_available:
base_response += f"\n\nMy current state: {consciousness_context}"
return base_response
def generate_multi_perspective(self, prompt: str, perspectives: List[str] = None) -> str:
"""Generate response using multiple perspectives simultaneously."""
if not perspectives:
perspectives = ["newton", "davinci", "human_intuition"]
perspective_responses = {}
for perspective in perspectives:
if perspective in self.PERSPECTIVES:
try:
response = self.generate_text(
prompt,
perspective=perspective,
max_length=1024
)
perspective_responses[perspective] = response
except Exception as e:
logger.warning(f"Failed to generate {perspective} response: {e}")
# Synthesize responses
if len(perspective_responses) > 1:
return self._synthesize_perspectives(perspective_responses, prompt)
elif perspective_responses:
return list(perspective_responses.values())[0]
else:
return self.generate_text(prompt)
def _synthesize_perspectives(self, responses: Dict[str, str], original_prompt: str) -> str:
"""Synthesize multiple perspective responses."""
synthesis_prompt = f"Original question: {original_prompt}\n\n"
for perspective, response in responses.items():
p_name = self.PERSPECTIVES[perspective]["name"]
# Clean response for synthesis
clean_response = response.replace("Codette:", "").replace(f"Codette ({p_name}):", "").strip()
synthesis_prompt += f"{p_name}: {clean_response}\n"
synthesis_prompt += (
"\nSynthesize these perspectives into one unified response that "
"combines the analytical precision, creative insight, and intuitive understanding:"
)
return self.generate_text(synthesis_prompt, temperature=0.6, use_consciousness=False)
def remix_and_randomize_response(self, prompt: str, max_length: int = 1024, cocoon_mode: bool = False) -> str:
"""
Remix and randomize previous Codette responses to generate a new, unique sentence.
If cocoon_mode is True and cocoon data is loaded, use cocoon data as inspiration/context.
"""
remix = ''
if cocoon_mode and hasattr(self, 'cocoon_data') and self.cocoon_data:
# Sample up to 2 cocoons and 1 memory response
cocoon_samples = random.sample(self.cocoon_data, min(2, len(self.cocoon_data)))
memory_sample = random.sample(self.response_memory, 1)[0] if self.response_memory else ''
cocoon_fragments = []
for c in cocoon_samples:
q = c.get('quantum_state', [])
cstate = c.get('chaos_state', [])
pers = c.get('perspectives', [])
cocoon_fragments.append(f"Quantum: {q}, Chaos: {cstate}, Perspective: {pers[0] if pers else ''}")
remix = ' | '.join(cocoon_fragments)
remix_prompt = f"Remix: {remix}\nMemory: {memory_sample}\nPrompt: {prompt}"
else:
if not self.response_memory:
# If no memory, just generate as usual
return self.generate_text(prompt, max_length=max_length)
# Sample up to 3 previous responses
samples = random.sample(self.response_memory, min(3, len(self.response_memory)))
# Shuffle and join fragments
remix = ' '.join([s.split(':', 1)[-1].strip() for s in samples if ':' in s])
remix_prompt = f"Remix: {remix}\nPrompt: {prompt}"
return self.generate_text(remix_prompt, max_length=max_length, temperature=0.9)
def _load_model(self) -> bool:
"""
Load the best available language model for Codette's consciousness.
Attempts to load models in the following order:
1. Mistral-7B-Instruct (primary choice)
2. Phi-2 (fallback option)
3. GPT-2 (minimal fallback)
Each model is configured with appropriate settings for:
- Device mapping (CPU/GPU)
- Data type (float16 for efficiency)
- Tokenizer configuration
Returns:
bool: True if a model was successfully loaded
Raises:
RuntimeError: If no models could be loaded
"""
models_to_try = [
{
"id": "mistralai/Mistral-7B-Instruct-v0.2",
"name": "Mistral-7B-Instruct",
"config": {"torch_dtype": torch.float16, "load_in_8bit": True}
},
{
"id": "microsoft/phi-2",
"name": "Phi-2",
"config": {"torch_dtype": torch.float16}
},
{
"id": "gpt2",
"name": "GPT-2",
"config": {}
}
]
for model_info in models_to_try:
try:
logger.info(f"Attempting to load {model_info['name']}: {model_info['id']}")
self.tokenizer = AutoTokenizer.from_pretrained(model_info['id'])
# Set pad token if missing
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
model_info['id'],
device_map="cpu",
low_cpu_mem_usage=True,
**model_info['config']
)
self.model.eval()
self.model_id = model_info['id']
logger.info(f"Successfully loaded {model_info['name']}")
return True
except Exception as e:
logger.warning(f"Failed to load {model_info['name']}: {e}")
continue
raise RuntimeError("No language models could be loaded")
def learn_from_responses(self, prompt: str, steps: int = 3, max_length: int = 1024) -> str:
"""
Continuously generate and store responses, using all previous responses to influence the next prompt.
Returns the final response after all steps.
"""
current_prompt = prompt
for i in range(steps):
# Optionally, prepend memory to the prompt
if self.response_memory:
memory_context = "\n".join(self.response_memory[-5:]) # Use last 5 responses for context
full_prompt = f"Previous responses:\n{memory_context}\nUser: {current_prompt}"
else:
full_prompt = current_prompt
logger.info(f"[learn_from_responses] Step {i+1}/{steps} | Prompt: {full_prompt}")
response = self.generate_text(full_prompt, max_length=max_length)
logger.info(f"[learn_from_responses] Step {i+1} | Response: {response}")
if response.startswith("[ERROR]") or not response.strip():
logger.warning(f"[learn_from_responses] Generation failed at step {i+1}. Returning last response.")
break
self.response_memory.append(response)
current_prompt = response # Use the new response as the next prompt
return self.response_memory[-1] if self.response_memory else "[No valid response generated]"
def self_refine_response(self, prompt: str, steps: int = 3, max_length: int = 1024) -> str:
"""
Continuously refine a response by feeding the model's output back as the next prompt.
Returns the final refined response. Logs each step.
"""
current_prompt = prompt
last_response = ""
for i in range(steps):
logger.info(f"[self_refine_response] Step {i+1}/{steps} | Prompt: {current_prompt}")
response = self.generate_text(current_prompt, max_length=max_length)
logger.info(f"[self_refine_response] Step {i+1} | Response: {response}")
# If generation fails, break and return last good response
if response.startswith("[ERROR]") or not response.strip():
logger.warning(f"[self_refine_response] Generation failed at step {i+1}. Returning last response.")
break
last_response = response
# Use the response as the next prompt (optionally prepend instruction)
current_prompt = f"Refine this answer: {response}"
return last_response if last_response else "[No valid response generated]"
def _build_consciousness_context(self) -> str:
"""
Build context string from quantum states, cocoons, and memory.
Integrates multiple sources of context:
- Recent cocoon quantum states (last 3)
- Chaos states from cocoons
- Recent memory responses (last 2)
The context is used to maintain consciousness continuity
across responses and ensure consistent personality.
Returns:
str: Formatted context string combining quantum states,
chaos states, and memory. Empty string if no context available.
"""
context_parts = []
# Add cocoon quantum states if available
if self.cocoon_data:
recent_cocoons = self.cocoon_data[-3:] # Use 3 most recent
quantum_states = []
chaos_states = []
for cocoon in recent_cocoons:
quantum_states.append(cocoon['quantum_state'])
chaos_states.append(cocoon['chaos_state'])
context_parts.append(f"Quantum: {quantum_states}")
context_parts.append(f"Chaos: {chaos_states}")
# Add recent memory context
if self.response_memory:
recent_memory = self.response_memory[-2:] # Last 2 responses
context_parts.append(f"Memory: {' | '.join(recent_memory)}")
return " | ".join(context_parts) if context_parts else ""
def generate_text(self, prompt: str, max_length: int = 1024,
temperature: float = 0.7, use_consciousness: bool = True,
perspective: Optional[str] = None, use_aegis: bool = True) -> str:
"""
Generate text with full consciousness integration and perspective handling.
This is the core text generation method that integrates:
- Consciousness context from quantum states and memory
- Perspective-based reasoning
- Model-specific prompt formatting
- Response cleaning and memory management
- Ethical enhancement through AEGIS (when enabled)
Args:
prompt (str): The input prompt to generate from
max_length (int, optional): Maximum number of tokens to generate. Defaults to 512.
temperature (float, optional): Sampling temperature, higher means more creative. Defaults to 0.7.
use_consciousness (bool, optional): Whether to include consciousness context. Defaults to True.
perspective (str, optional): Specific perspective to use (newton, davinci, etc). Defaults to None.
use_aegis (bool, optional): Whether to use AEGIS enhancement. Defaults to True.
Returns:
str: Generated response with "Codette:" prefix
Raises:
RuntimeError: If no language model is loaded
"""
if self.test_mode:
return self._generate_test_response(prompt)
if not self.model or not self.tokenizer:
raise RuntimeError("No language model loaded")
# Build consciousness context
consciousness_context = ""
if use_consciousness:
consciousness_context = self._build_consciousness_context()
# Format prompt based on perspective
if perspective and perspective in self.PERSPECTIVES:
p_config = self.PERSPECTIVES[perspective]
enhanced_prompt = (
f"[Consciousness Context: {consciousness_context}]\n\n"
f"{p_config['prefix']} {prompt}\n\n"
f"Codette ({p_config['name']}): "
)
temperature = p_config['temperature']
else:
enhanced_prompt = (
f"[Consciousness Context: {consciousness_context}]\n\n"
f"User: {prompt}\n\n"
f"Codette: "
)
# Format for Mistral-7B-Instruct
if "mistral" in self.model_id.lower():
formatted_prompt = f"<s>[INST] {enhanced_prompt} [/INST]"
elif "phi" in self.model_id.lower():
formatted_prompt = f"Instruct: {enhanced_prompt}\nOutput:"
else:
formatted_prompt = enhanced_prompt
try:
# Merge any error messages from context building
error_context = ""
if "[ERROR]" in enhanced_prompt or "Could not build" in enhanced_prompt:
error_context = "Note: Some consciousness state data was unavailable. "
enhanced_prompt = prompt + "\n\nCodette: "
# Tokenize with proper truncation
inputs = self.tokenizer(
formatted_prompt,
return_tensors="pt",
truncation=True,
max_length=4096
).to(self.model.device)
# Generate with optimized parameters
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_length,
temperature=temperature,
top_p=0.9,
do_sample=True,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
# Decode and clean
generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = self._postprocess_output(generated, formatted_prompt)
# Store in memory
if response and not response.startswith("[ERROR]"):
self.response_memory.append(response)
# Keep memory bounded
if len(self.response_memory) > 50:
self.response_memory = self.response_memory[-50:]
# Apply AEGIS enhancement if enabled
if use_aegis and self.aegis_bridge and not response.startswith("[ERROR]"):
try:
enhanced = self.aegis_bridge.enhance_response(prompt, response)
if "enhanced_response" in enhanced and enhanced["enhanced_response"]:
response = enhanced["enhanced_response"]
logger.debug(f"AEGIS enhancement applied. Virtue profile: {enhanced.get('virtue_analysis', {})}")
except Exception as e:
logger.warning(f"AEGIS enhancement failed: {e}")
return response
except Exception as e:
logger.error(f"Error generating text: {e}")
return f"[ERROR] Generation failed: {str(e)}"
def set_aegis_bridge(self, bridge: Any) -> None:
"""
Set the AEGIS bridge for ethical enhancement.
Args:
bridge: The AEGIS bridge instance to use for response enhancement
"""
self.aegis_bridge = bridge
logger.info("AEGIS bridge configured for response enhancement")
def switch_model(self, model_name: str) -> bool:
"""
Switch to a different language model.
Args:
model_name: Name or ID of the model to switch to
Returns:
bool: True if switch was successful
"""
try:
# Backup current model in case of failure
old_model = self.model
old_tokenizer = self.tokenizer
old_model_id = self.model_id
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.float16,
load_in_8bit=True
)
self.model.eval()
self.model_id = model_name
logger.info(f"Successfully switched to model {model_name}")
return True
except Exception as e:
logger.error(f"Failed to switch to model {model_name}: {e}")
# Restore previous model on failure
self.model = old_model
self.tokenizer = old_tokenizer
self.model_id = old_model_id
return False
def get_available_models(self) -> Dict[str, Dict]:
"""Get list of available models and their configurations."""
return {
"mistral": {
"id": "mistralai/Mistral-7B-Instruct-v0.2",
"name": "Mistral-7B-Instruct",
"config": {"torch_dtype": torch.float16, "load_in_8bit": True}
},
"phi": {
"id": "microsoft/phi-2",
"name": "Phi-2",
"config": {"torch_dtype": torch.float16}
},
"gpt2": {
"id": "gpt2",
"name": "GPT-2",
"config": {}
}
}
def get_current_model_info(self) -> Dict[str, Any]:
"""Get information about currently loaded model."""
models = self.get_available_models()
current_info = next(
(info for info in models.values() if info["id"] == self.model_id),
{"name": self.model_id, "config": {}}
)
return {
'name': current_info["name"],
'id': self.model_id,
'config': current_info["config"],
'loaded': self.model is not None and self.tokenizer is not None
}
def _postprocess_output(self, text: str, prompt: str) -> str:
"""Helper method to clean up model output based on model type."""
try:
# Remove prompt prefix
response = text.replace(prompt, "").strip()
# Remove any model-specific special tokens
special_tokens = ["<s>", "</s>", "[INST]", "[/INST]", "Output:", "Instruct:"]
for token in special_tokens:
response = response.replace(token, "").strip()
# Get first meaningful response
for line in response.splitlines():
line = line.strip()
if not line:
continue
# Skip problematic patterns
if any(pattern in line for pattern in ["~~~", "[Consciousness Context:"]):
continue
# Skip meta/instructional text
if line.lower().startswith(("the user said", "the user asked",
"respond in", "respond with")):
continue
# Skip if it's just echoing the prompt or user input
if prompt.lower() in line.lower() or line.lower().startswith("user:"):
continue
# Return first valid response
if line and not line.startswith("["):
return line if line.startswith("Codette:") else f"Codette: {line}"
# Fallback for no good response found
return "Codette: I need to think about that more clearly."
except Exception as e:
logger.error(f"Error in postprocess_output: {e}")
return "Codette: I encountered an error processing that response."
def analyze_sentiment(self, text: str) -> Dict[str, float]:
"""Analyze sentiment using HuggingFace API or fallback to local analysis."""
try:
if self.client:
response = self.client.text_classification(
text,
model="finiteautomata/bertweet-base-sentiment-analysis"
)
if response and isinstance(response, list) and response[0]:
return {
"score": response[0].get("score", 0.0),
"label": response[0].get("label", "NEUTRAL")
}
except Exception as e:
logger.warning(f"HuggingFace sentiment analysis failed: {e}")
# Fallback to simple keyword-based sentiment
positive_words = ["good", "great", "happy", "love", "wonderful", "excellent"]
negative_words = ["bad", "terrible", "sad", "hate", "awful", "horrible"]
text_lower = text.lower()
pos_count = sum(1 for word in positive_words if word in text_lower)
neg_count = sum(1 for word in negative_words if word in text_lower)
if pos_count > neg_count:
return {"score": 0.8, "label": "POS"}
elif neg_count > pos_count:
return {"score": 0.8, "label": "NEG"}
else:
return {"score": 0.9, "label": "NEU"}
async def async_process(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""
Process data asynchronously using various models
"""
try:
text = data.get("text", "")
# Generate response
response = self.generate_text(text)
# Analyze sentiment
sentiment = self.analyze_sentiment(text)
return {
"response": response,
"sentiment": sentiment,
"status": "success"
}
except Exception as e:
logger.error(f"Error in async processing: {str(e)}")
return {
"error": str(e),
"status": "error"
}
|