File size: 3,796 Bytes
02919f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from typing import List, Dict, Any

# cognitive_processor.py
class CognitiveProcessor:
    """Multi-perspective analysis engine"""
    MODES = {
        "scientific": lambda q: f"Scientific Analysis: {q} demonstrates fundamental principles",
        "creative": lambda q: f"Creative Insight: {q} suggests innovative approaches",
        "emotional": lambda q: f"Emotional Interpretation: {q} conveys hopeful intent"
    }

    def __init__(self, modes: List[str]):
        self.active_modes = [self.MODES[m] for m in modes if m in self.MODES]

    def generate_insights(self, query: str) -> List[str]:
        return [mode(query) for mode in self.active_modes]


class AgileAGIFunctionality:
    def __init__(self, learning_capabilities, action_execution, ethical_alignment, cognitive_modes: List[str]):
        self.learning_capabilities = learning_capabilities
        self.action_execution = action_execution
        self.ethical_alignment = ethical_alignment
        self.cognitive_processor = CognitiveProcessor(cognitive_modes)

    def analyze_learning_capabilities(self):
        return {
            "experience_learning": self.learning_capabilities["experience_learning"],
            "flexibility": self.learning_capabilities["flexibility"],
            "generalization": self.learning_capabilities["generalization"]
        }

    def analyze_action_execution(self):
        return {
            "goal_directed_behavior": self.action_execution["goal_directed_behavior"],
            "problem_solving": self.action_execution["problem_solving"],
            "task_autonomy": self.action_execution["task_autonomy"]
        }

    def analyze_ethical_alignment(self):
        return {
            "value_alignment": self.ethical_alignment["value_alignment"],
            "self_awareness": self.ethical_alignment["self_awareness"],
            "transparency": self.ethical_alignment["transparency"]
        }

    def combined_analysis(self, query: str):
        insights = self.cognitive_processor.generate_insights(query)
        return {
            "learning_capabilities": self.analyze_learning_capabilities(),
            "action_execution": self.analyze_action_execution(),
            "ethical_alignment": self.analyze_ethical_alignment(),
            "cognitive_insights": insights
        }


class UniversalReasoning:
    def __init__(self, agi_functionality: AgileAGIFunctionality):
        self.agi_functionality = agi_functionality

    def perform_reasoning(self, query: str) -> Dict[str, Any]:
        analysis_results = self.agi_functionality.combined_analysis(query)
        
        # Additional reasoning logic can be added here
        reasoning_results = {
            "analysis_results": analysis_results,
            "reasoning_summary": f"Based on the analysis of the query '{query}', the AGI demonstrates comprehensive capabilities in learning, action execution, and ethical alignment."
        }
        
        return reasoning_results


# Example usage
learning_capabilities = {
    "experience_learning": True,
    "flexibility": True,
    "generalization": True
}

action_execution = {
    "goal_directed_behavior": True,
    "problem_solving": True,
    "task_autonomy": True
}

ethical_alignment = {
    "value_alignment": True,
    "self_awareness": True,
    "transparency": True
}

cognitive_modes = ["scientific", "creative", "emotional"]

agi_functionality = AgileAGIFunctionality(learning_capabilities, action_execution, ethical_alignment, cognitive_modes)
universal_reasoning = UniversalReasoning(agi_functionality)

query = "How can AGI improve healthcare?"
reasoning_results = universal_reasoning.perform_reasoning(query)

print(reasoning_results)