Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,247 +0,0 @@
|
|
| 1 |
-
import gdown
|
| 2 |
-
import os
|
| 3 |
-
import torch
|
| 4 |
-
import requests
|
| 5 |
-
import numpy as np
|
| 6 |
-
import numpy.matlib
|
| 7 |
-
import copy
|
| 8 |
-
import cv2
|
| 9 |
-
from PIL import Image
|
| 10 |
-
from typing import List
|
| 11 |
-
import timm
|
| 12 |
-
import gradio as gr
|
| 13 |
-
import torchvision.transforms as transforms
|
| 14 |
-
import zipfile
|
| 15 |
-
|
| 16 |
-
from pim_module import PluginMoodel # Assure-toi que ce fichier est présent
|
| 17 |
-
|
| 18 |
-
# === Décompression automatique du dossier imgs ===
|
| 19 |
-
if not os.path.exists("imgs") and os.path.exists("imgs.zip"):
|
| 20 |
-
print("Décompression du dossier imgs...")
|
| 21 |
-
with zipfile.ZipFile("imgs.zip", 'r') as zip_ref:
|
| 22 |
-
zip_ref.extractall(".")
|
| 23 |
-
print("Décompression terminée !")
|
| 24 |
-
|
| 25 |
-
# === Téléchargement automatique depuis Google Drive ===
|
| 26 |
-
if not os.path.exists("weights.pt"):
|
| 27 |
-
print("Téléchargement des poids depuis Google Drive avec gdown...")
|
| 28 |
-
file_id = "1Y-JMher8KVlIue3t8oW-AXt7xefMx5ox"
|
| 29 |
-
url = f"https://drive.google.com/uc?id={file_id}"
|
| 30 |
-
gdown.download(url, "weights.pt", quiet=False)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# === Classes
|
| 35 |
-
classes_list = [
|
| 36 |
-
"Ferrage_Et_Accessoires_Anti_Fausse_Manoeuvre",
|
| 37 |
-
"Ferrage_Et_Accessoires_Busettes",
|
| 38 |
-
"Ferrage_Et_Accessoires_Butees",
|
| 39 |
-
"Ferrage_Et_Accessoires_Chariots",
|
| 40 |
-
"Ferrage_Et_Accessoires_Charniere",
|
| 41 |
-
"Ferrage_Et_Accessoires_Compas_limiteur",
|
| 42 |
-
"Ferrage_Et_Accessoires_Cylindres",
|
| 43 |
-
"Ferrage_Et_Accessoires_Gaches",
|
| 44 |
-
"Ferrage_Et_Accessoires_Renvois_D_Angle",
|
| 45 |
-
"Joints_Et_Consommables_Equerres_Aluminium_Moulees",
|
| 46 |
-
"Joints_Et_Consommables_Visserie_Inox_Alu",
|
| 47 |
-
"Poignee_Carre_7_mm",
|
| 48 |
-
"Poignee_Carre_8_mm",
|
| 49 |
-
"Poignee_Cremone",
|
| 50 |
-
"Poignee_Cuvette",
|
| 51 |
-
"Poignee_De_Tirage",
|
| 52 |
-
"Poignee_Pour_Levant_Coulissant",
|
| 53 |
-
"Serrure_Cremone_Multipoints",
|
| 54 |
-
"Serrure_Cuvette",
|
| 55 |
-
"Serrure_Gaches",
|
| 56 |
-
"Serrure_Loqueteau",
|
| 57 |
-
"Serrure_Pene_Crochet",
|
| 58 |
-
"Serrure_Pour_Porte",
|
| 59 |
-
"Serrure_Tringles"
|
| 60 |
-
]
|
| 61 |
-
|
| 62 |
-
short_classes_list = [
|
| 63 |
-
"Anti-fausse-manoeuvre",
|
| 64 |
-
"Busettes",
|
| 65 |
-
"Butées",
|
| 66 |
-
"Chariots",
|
| 67 |
-
"Charnière",
|
| 68 |
-
"Compas-limiteur",
|
| 69 |
-
"Cylindres",
|
| 70 |
-
"Gaches",
|
| 71 |
-
"Renvois d'angle",
|
| 72 |
-
"Equerres aluminium moulées",
|
| 73 |
-
"Visserie inox alu",
|
| 74 |
-
"Poignée carré 7 mm",
|
| 75 |
-
"Poignée carré 8 mm",
|
| 76 |
-
"Poignée crémone",
|
| 77 |
-
"Poignée cuvette",
|
| 78 |
-
"Poignée de tirage",
|
| 79 |
-
"Poignée pour levant coulissant",
|
| 80 |
-
"Serrure crémone multipoints",
|
| 81 |
-
"Serrure cuvette",
|
| 82 |
-
"Serrure gaches",
|
| 83 |
-
"Loqueteau",
|
| 84 |
-
"Serrure pene crochet",
|
| 85 |
-
"Serrure pour porte",
|
| 86 |
-
"Serrure tringles",
|
| 87 |
-
]
|
| 88 |
-
|
| 89 |
-
data_size = 384
|
| 90 |
-
fpn_size = 1536
|
| 91 |
-
num_classes = 24
|
| 92 |
-
num_selects = {'layer1': 256, 'layer2': 128, 'layer3': 64, 'layer4': 32}
|
| 93 |
-
features, grads, module_id_mapper = {}, {}, {}
|
| 94 |
-
|
| 95 |
-
def forward_hook(module, inp_hs, out_hs):
|
| 96 |
-
layer_id = len(features) + 1
|
| 97 |
-
module_id_mapper[module] = layer_id
|
| 98 |
-
features[layer_id] = {"in": inp_hs, "out": out_hs}
|
| 99 |
-
|
| 100 |
-
def backward_hook(module, inp_grad, out_grad):
|
| 101 |
-
layer_id = module_id_mapper[module]
|
| 102 |
-
grads[layer_id] = {"in": inp_grad, "out": out_grad}
|
| 103 |
-
|
| 104 |
-
def build_model(path: str):
|
| 105 |
-
backbone = timm.create_model('swin_large_patch4_window12_384_in22k', pretrained=True)
|
| 106 |
-
model = PluginMoodel(
|
| 107 |
-
backbone=backbone,
|
| 108 |
-
return_nodes=None,
|
| 109 |
-
img_size=data_size,
|
| 110 |
-
use_fpn=True,
|
| 111 |
-
fpn_size=fpn_size,
|
| 112 |
-
proj_type="Linear",
|
| 113 |
-
upsample_type="Conv",
|
| 114 |
-
use_selection=True,
|
| 115 |
-
num_classes=num_classes,
|
| 116 |
-
num_selects=num_selects,
|
| 117 |
-
use_combiner=True,
|
| 118 |
-
comb_proj_size=None
|
| 119 |
-
)
|
| 120 |
-
ckpt = torch.load(path, map_location="cpu", weights_only=False)
|
| 121 |
-
model.load_state_dict(ckpt["model"], strict=False)
|
| 122 |
-
model.eval()
|
| 123 |
-
|
| 124 |
-
for layer in [0, 1, 2, 3]:
|
| 125 |
-
model.backbone.layers[layer].register_forward_hook(forward_hook)
|
| 126 |
-
model.backbone.layers[layer].register_full_backward_hook(backward_hook)
|
| 127 |
-
|
| 128 |
-
for i in range(1, 5):
|
| 129 |
-
getattr(model.fpn_down, f'Proj_layer{i}').register_forward_hook(forward_hook)
|
| 130 |
-
getattr(model.fpn_down, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
|
| 131 |
-
getattr(model.fpn_up, f'Proj_layer{i}').register_forward_hook(forward_hook)
|
| 132 |
-
getattr(model.fpn_up, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
|
| 133 |
-
|
| 134 |
-
return model
|
| 135 |
-
|
| 136 |
-
class ImgLoader:
|
| 137 |
-
def __init__(self, img_size):
|
| 138 |
-
self.transform = transforms.Compose([
|
| 139 |
-
transforms.Resize((510, 510), Image.BILINEAR),
|
| 140 |
-
transforms.CenterCrop((img_size, img_size)),
|
| 141 |
-
transforms.ToTensor(),
|
| 142 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 143 |
-
])
|
| 144 |
-
|
| 145 |
-
def load(self, input_img):
|
| 146 |
-
if isinstance(input_img, str):
|
| 147 |
-
ori_img = cv2.imread(input_img)
|
| 148 |
-
img = Image.fromarray(cv2.cvtColor(ori_img, cv2.COLOR_BGR2RGB))
|
| 149 |
-
elif isinstance(input_img, Image.Image):
|
| 150 |
-
img = input_img
|
| 151 |
-
else:
|
| 152 |
-
raise ValueError("Image invalide")
|
| 153 |
-
|
| 154 |
-
if img.mode != "RGB":
|
| 155 |
-
img = img.convert("RGB")
|
| 156 |
-
|
| 157 |
-
return self.transform(img).unsqueeze(0)
|
| 158 |
-
|
| 159 |
-
def cal_backward(out) -> dict:
|
| 160 |
-
target_layer_names = ['layer1', 'layer2', 'layer3', 'layer4',
|
| 161 |
-
'FPN1_layer1', 'FPN1_layer2', 'FPN1_layer3', 'FPN1_layer4', 'comb_outs']
|
| 162 |
-
|
| 163 |
-
sum_out = None
|
| 164 |
-
for name in target_layer_names:
|
| 165 |
-
tmp_out = out[name].mean(1) if name != "comb_outs" else out[name]
|
| 166 |
-
tmp_out = torch.softmax(tmp_out, dim=-1)
|
| 167 |
-
sum_out = tmp_out if sum_out is None else sum_out + tmp_out
|
| 168 |
-
|
| 169 |
-
with torch.no_grad():
|
| 170 |
-
smax = torch.softmax(sum_out, dim=-1)
|
| 171 |
-
A = np.transpose(np.matlib.repmat(smax[0], num_classes, 1)) - np.eye(num_classes)
|
| 172 |
-
_, _, V = np.linalg.svd(A, full_matrices=True)
|
| 173 |
-
V = V[num_classes - 1, :]
|
| 174 |
-
if V[0] < 0:
|
| 175 |
-
V = -V
|
| 176 |
-
V = np.log(V)
|
| 177 |
-
V = V - min(V)
|
| 178 |
-
V = V / sum(V)
|
| 179 |
-
|
| 180 |
-
top5_indices = np.argsort(-V)[:5]
|
| 181 |
-
top5_scores = -np.sort(-V)[:5]
|
| 182 |
-
|
| 183 |
-
# Construction du dictionnaire pour gr.Label
|
| 184 |
-
top5_dict = {classes_list[int(idx)]: float(f"{score:.4f}") for idx, score in zip(top5_indices, top5_scores)}
|
| 185 |
-
return top5_dict
|
| 186 |
-
|
| 187 |
-
# === Chargement du modèle
|
| 188 |
-
model = build_model("weights.pt")
|
| 189 |
-
img_loader = ImgLoader(data_size)
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
def predict_image(image: Image.Image):
|
| 194 |
-
global features, grads, module_id_mapper
|
| 195 |
-
features, grads, module_id_mapper = {}, {}, {}
|
| 196 |
-
|
| 197 |
-
if image is None:
|
| 198 |
-
return {}
|
| 199 |
-
# raise ValueError("Aucune image reçue. Vérifie l'entrée.")
|
| 200 |
-
|
| 201 |
-
if image.mode != "RGB":
|
| 202 |
-
image = image.convert("RGB")
|
| 203 |
-
|
| 204 |
-
image_path = "temp.jpg"
|
| 205 |
-
image.save(image_path)
|
| 206 |
-
|
| 207 |
-
img_tensor = img_loader.load(image_path)
|
| 208 |
-
out = model(img_tensor)
|
| 209 |
-
top5_dict = cal_backward(out) # {classe: score}
|
| 210 |
-
|
| 211 |
-
gallery_outputs = []
|
| 212 |
-
for idx, class_name in enumerate(list(top5_dict.keys())):
|
| 213 |
-
images = [
|
| 214 |
-
(f"imgs/{class_name}/{class_name}_0001.jpg", f"Exemple {class_name} 1"),
|
| 215 |
-
(f"imgs/{class_name}/{class_name}_0002.jpg", f"Exemple {class_name} 2"),
|
| 216 |
-
(f"imgs/{class_name}/{class_name}_0003.jpg", f"Exemple {class_name} 3"),
|
| 217 |
-
]
|
| 218 |
-
gallery_outputs.append(images)
|
| 219 |
-
|
| 220 |
-
return top5_dict, *gallery_outputs
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
# === Interface Gradio
|
| 224 |
-
with gr.Blocks(css="""
|
| 225 |
-
.gr-image-upload { display: none !important }
|
| 226 |
-
.gallery-container .gr-box { height: auto !important; padding: 0 !important; }
|
| 227 |
-
""") as demo:
|
| 228 |
-
with gr.Row():
|
| 229 |
-
with gr.Column(scale=1):
|
| 230 |
-
with gr.Tab("Téléversement"):
|
| 231 |
-
image_input_upload = gr.Image(type="pil", label="Image à classer (upload)", sources=["upload"])
|
| 232 |
-
with gr.Tab("Webcam"):
|
| 233 |
-
image_input_webcam = gr.Image(type="pil", label="Image à classer (webcam)", sources=["webcam"])
|
| 234 |
-
|
| 235 |
-
with gr.Column(scale=1.5):
|
| 236 |
-
label_output = gr.Label(label="Prédictions")
|
| 237 |
-
gallery_outputs = [
|
| 238 |
-
gr.Gallery(label=f"", columns=3, height=300, container=True, elem_classes=["gallery-container"])
|
| 239 |
-
for i in range(5)
|
| 240 |
-
]
|
| 241 |
-
|
| 242 |
-
image_input_upload.change(fn=predict_image, inputs=image_input_upload, outputs=[label_output] + gallery_outputs)
|
| 243 |
-
image_input_webcam.change(fn=predict_image, inputs=image_input_webcam, outputs=[label_output] + gallery_outputs)
|
| 244 |
-
|
| 245 |
-
if __name__ == "__main__":
|
| 246 |
-
demo.launch()
|
| 247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|