RahmaDev commited on
Commit
84ca8b9
·
verified ·
1 Parent(s): 610a9ce

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -247
app.py DELETED
@@ -1,247 +0,0 @@
1
- import gdown
2
- import os
3
- import torch
4
- import requests
5
- import numpy as np
6
- import numpy.matlib
7
- import copy
8
- import cv2
9
- from PIL import Image
10
- from typing import List
11
- import timm
12
- import gradio as gr
13
- import torchvision.transforms as transforms
14
- import zipfile
15
-
16
- from pim_module import PluginMoodel # Assure-toi que ce fichier est présent
17
-
18
- # === Décompression automatique du dossier imgs ===
19
- if not os.path.exists("imgs") and os.path.exists("imgs.zip"):
20
- print("Décompression du dossier imgs...")
21
- with zipfile.ZipFile("imgs.zip", 'r') as zip_ref:
22
- zip_ref.extractall(".")
23
- print("Décompression terminée !")
24
-
25
- # === Téléchargement automatique depuis Google Drive ===
26
- if not os.path.exists("weights.pt"):
27
- print("Téléchargement des poids depuis Google Drive avec gdown...")
28
- file_id = "1Y-JMher8KVlIue3t8oW-AXt7xefMx5ox"
29
- url = f"https://drive.google.com/uc?id={file_id}"
30
- gdown.download(url, "weights.pt", quiet=False)
31
-
32
-
33
-
34
- # === Classes
35
- classes_list = [
36
- "Ferrage_Et_Accessoires_Anti_Fausse_Manoeuvre",
37
- "Ferrage_Et_Accessoires_Busettes",
38
- "Ferrage_Et_Accessoires_Butees",
39
- "Ferrage_Et_Accessoires_Chariots",
40
- "Ferrage_Et_Accessoires_Charniere",
41
- "Ferrage_Et_Accessoires_Compas_limiteur",
42
- "Ferrage_Et_Accessoires_Cylindres",
43
- "Ferrage_Et_Accessoires_Gaches",
44
- "Ferrage_Et_Accessoires_Renvois_D_Angle",
45
- "Joints_Et_Consommables_Equerres_Aluminium_Moulees",
46
- "Joints_Et_Consommables_Visserie_Inox_Alu",
47
- "Poignee_Carre_7_mm",
48
- "Poignee_Carre_8_mm",
49
- "Poignee_Cremone",
50
- "Poignee_Cuvette",
51
- "Poignee_De_Tirage",
52
- "Poignee_Pour_Levant_Coulissant",
53
- "Serrure_Cremone_Multipoints",
54
- "Serrure_Cuvette",
55
- "Serrure_Gaches",
56
- "Serrure_Loqueteau",
57
- "Serrure_Pene_Crochet",
58
- "Serrure_Pour_Porte",
59
- "Serrure_Tringles"
60
- ]
61
-
62
- short_classes_list = [
63
- "Anti-fausse-manoeuvre",
64
- "Busettes",
65
- "Butées",
66
- "Chariots",
67
- "Charnière",
68
- "Compas-limiteur",
69
- "Cylindres",
70
- "Gaches",
71
- "Renvois d'angle",
72
- "Equerres aluminium moulées",
73
- "Visserie inox alu",
74
- "Poignée carré 7 mm",
75
- "Poignée carré 8 mm",
76
- "Poignée crémone",
77
- "Poignée cuvette",
78
- "Poignée de tirage",
79
- "Poignée pour levant coulissant",
80
- "Serrure crémone multipoints",
81
- "Serrure cuvette",
82
- "Serrure gaches",
83
- "Loqueteau",
84
- "Serrure pene crochet",
85
- "Serrure pour porte",
86
- "Serrure tringles",
87
- ]
88
-
89
- data_size = 384
90
- fpn_size = 1536
91
- num_classes = 24
92
- num_selects = {'layer1': 256, 'layer2': 128, 'layer3': 64, 'layer4': 32}
93
- features, grads, module_id_mapper = {}, {}, {}
94
-
95
- def forward_hook(module, inp_hs, out_hs):
96
- layer_id = len(features) + 1
97
- module_id_mapper[module] = layer_id
98
- features[layer_id] = {"in": inp_hs, "out": out_hs}
99
-
100
- def backward_hook(module, inp_grad, out_grad):
101
- layer_id = module_id_mapper[module]
102
- grads[layer_id] = {"in": inp_grad, "out": out_grad}
103
-
104
- def build_model(path: str):
105
- backbone = timm.create_model('swin_large_patch4_window12_384_in22k', pretrained=True)
106
- model = PluginMoodel(
107
- backbone=backbone,
108
- return_nodes=None,
109
- img_size=data_size,
110
- use_fpn=True,
111
- fpn_size=fpn_size,
112
- proj_type="Linear",
113
- upsample_type="Conv",
114
- use_selection=True,
115
- num_classes=num_classes,
116
- num_selects=num_selects,
117
- use_combiner=True,
118
- comb_proj_size=None
119
- )
120
- ckpt = torch.load(path, map_location="cpu", weights_only=False)
121
- model.load_state_dict(ckpt["model"], strict=False)
122
- model.eval()
123
-
124
- for layer in [0, 1, 2, 3]:
125
- model.backbone.layers[layer].register_forward_hook(forward_hook)
126
- model.backbone.layers[layer].register_full_backward_hook(backward_hook)
127
-
128
- for i in range(1, 5):
129
- getattr(model.fpn_down, f'Proj_layer{i}').register_forward_hook(forward_hook)
130
- getattr(model.fpn_down, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
131
- getattr(model.fpn_up, f'Proj_layer{i}').register_forward_hook(forward_hook)
132
- getattr(model.fpn_up, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
133
-
134
- return model
135
-
136
- class ImgLoader:
137
- def __init__(self, img_size):
138
- self.transform = transforms.Compose([
139
- transforms.Resize((510, 510), Image.BILINEAR),
140
- transforms.CenterCrop((img_size, img_size)),
141
- transforms.ToTensor(),
142
- transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
143
- ])
144
-
145
- def load(self, input_img):
146
- if isinstance(input_img, str):
147
- ori_img = cv2.imread(input_img)
148
- img = Image.fromarray(cv2.cvtColor(ori_img, cv2.COLOR_BGR2RGB))
149
- elif isinstance(input_img, Image.Image):
150
- img = input_img
151
- else:
152
- raise ValueError("Image invalide")
153
-
154
- if img.mode != "RGB":
155
- img = img.convert("RGB")
156
-
157
- return self.transform(img).unsqueeze(0)
158
-
159
- def cal_backward(out) -> dict:
160
- target_layer_names = ['layer1', 'layer2', 'layer3', 'layer4',
161
- 'FPN1_layer1', 'FPN1_layer2', 'FPN1_layer3', 'FPN1_layer4', 'comb_outs']
162
-
163
- sum_out = None
164
- for name in target_layer_names:
165
- tmp_out = out[name].mean(1) if name != "comb_outs" else out[name]
166
- tmp_out = torch.softmax(tmp_out, dim=-1)
167
- sum_out = tmp_out if sum_out is None else sum_out + tmp_out
168
-
169
- with torch.no_grad():
170
- smax = torch.softmax(sum_out, dim=-1)
171
- A = np.transpose(np.matlib.repmat(smax[0], num_classes, 1)) - np.eye(num_classes)
172
- _, _, V = np.linalg.svd(A, full_matrices=True)
173
- V = V[num_classes - 1, :]
174
- if V[0] < 0:
175
- V = -V
176
- V = np.log(V)
177
- V = V - min(V)
178
- V = V / sum(V)
179
-
180
- top5_indices = np.argsort(-V)[:5]
181
- top5_scores = -np.sort(-V)[:5]
182
-
183
- # Construction du dictionnaire pour gr.Label
184
- top5_dict = {classes_list[int(idx)]: float(f"{score:.4f}") for idx, score in zip(top5_indices, top5_scores)}
185
- return top5_dict
186
-
187
- # === Chargement du modèle
188
- model = build_model("weights.pt")
189
- img_loader = ImgLoader(data_size)
190
-
191
-
192
-
193
- def predict_image(image: Image.Image):
194
- global features, grads, module_id_mapper
195
- features, grads, module_id_mapper = {}, {}, {}
196
-
197
- if image is None:
198
- return {}
199
- # raise ValueError("Aucune image reçue. Vérifie l'entrée.")
200
-
201
- if image.mode != "RGB":
202
- image = image.convert("RGB")
203
-
204
- image_path = "temp.jpg"
205
- image.save(image_path)
206
-
207
- img_tensor = img_loader.load(image_path)
208
- out = model(img_tensor)
209
- top5_dict = cal_backward(out) # {classe: score}
210
-
211
- gallery_outputs = []
212
- for idx, class_name in enumerate(list(top5_dict.keys())):
213
- images = [
214
- (f"imgs/{class_name}/{class_name}_0001.jpg", f"Exemple {class_name} 1"),
215
- (f"imgs/{class_name}/{class_name}_0002.jpg", f"Exemple {class_name} 2"),
216
- (f"imgs/{class_name}/{class_name}_0003.jpg", f"Exemple {class_name} 3"),
217
- ]
218
- gallery_outputs.append(images)
219
-
220
- return top5_dict, *gallery_outputs
221
-
222
-
223
- # === Interface Gradio
224
- with gr.Blocks(css="""
225
- .gr-image-upload { display: none !important }
226
- .gallery-container .gr-box { height: auto !important; padding: 0 !important; }
227
- """) as demo:
228
- with gr.Row():
229
- with gr.Column(scale=1):
230
- with gr.Tab("Téléversement"):
231
- image_input_upload = gr.Image(type="pil", label="Image à classer (upload)", sources=["upload"])
232
- with gr.Tab("Webcam"):
233
- image_input_webcam = gr.Image(type="pil", label="Image à classer (webcam)", sources=["webcam"])
234
-
235
- with gr.Column(scale=1.5):
236
- label_output = gr.Label(label="Prédictions")
237
- gallery_outputs = [
238
- gr.Gallery(label=f"", columns=3, height=300, container=True, elem_classes=["gallery-container"])
239
- for i in range(5)
240
- ]
241
-
242
- image_input_upload.change(fn=predict_image, inputs=image_input_upload, outputs=[label_output] + gallery_outputs)
243
- image_input_webcam.change(fn=predict_image, inputs=image_input_webcam, outputs=[label_output] + gallery_outputs)
244
-
245
- if __name__ == "__main__":
246
- demo.launch()
247
-