RahmaDev commited on
Commit
7515072
·
verified ·
1 Parent(s): b6f2185

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -239
app.py DELETED
@@ -1,239 +0,0 @@
1
- import gdown
2
- import os
3
- import torch
4
- import requests
5
- import numpy as np
6
- import numpy.matlib
7
- import copy
8
- import cv2
9
- from PIL import Image
10
- from typing import List
11
- import timm
12
- import gradio as gr
13
- import torchvision.transforms as transforms
14
-
15
- from pim_module import PluginMoodel # Assure-toi que ce fichier est présent
16
-
17
- # === Téléchargement automatique depuis Google Drive ===
18
- if not os.path.exists("weights.pt"):
19
- print("Téléchargement des poids depuis Google Drive avec gdown...")
20
- file_id = "10nhim7twcKEGB16jVilPQGW0CrKo4jOY"
21
- url = f"https://drive.google.com/uc?id={file_id}"
22
- gdown.download(url, "weights.pt", quiet=False)
23
-
24
-
25
-
26
- # === Classes
27
- classes_list = [
28
- "Ferrage_Et_Accessoires_Anti_Fausse_Manoeuvre",
29
- "Ferrage_Et_Accessoires_Busettes",
30
- "Ferrage_Et_Accessoires_Butees",
31
- "Ferrage_Et_Accessoires_Chariots",
32
- "Ferrage_Et_Accessoires_Charniere",
33
- "Ferrage_Et_Accessoires_Compas_limiteur",
34
- "Ferrage_Et_Accessoires_Cylindres",
35
- "Ferrage_Et_Accessoires_Gaches",
36
- "Ferrage_Et_Accessoires_Renvois_D_Angle",
37
- "Joints_Et_Consommables_Equerres_Aluminium_Moulees",
38
- "Joints_Et_Consommables_Visserie_Inox_Alu",
39
- "Poignee_Carre_7_mm",
40
- "Poignee_Carre_8_mm",
41
- "Poignee_Cremone",
42
- "Poignee_Cuvette",
43
- "Poignee_De_Tirage",
44
- "Poignee_Pour_Levant_Coulissant",
45
- "Serrure_Cremone_Multipoints",
46
- "Serrure_Cuvette",
47
- "Serrure_Gaches",
48
- "Serrure_Loqueteau",
49
- "Serrure_Pene_Crochet",
50
- "Serrure_Pour_Porte",
51
- "Serrure_Tringles"
52
- ]
53
-
54
- short_classes_list = [
55
- "Anti-fausse-manoeuvre",
56
- "Busettes",
57
- "Butées",
58
- "Chariots",
59
- "Charnière",
60
- "Compas-limiteur",
61
- "Cylindres",
62
- "Gaches",
63
- "Renvois d'angle",
64
- "Equerres aluminium moulées",
65
- "Visserie inox alu",
66
- "Poignée carré 7 mm",
67
- "Poignée carré 8 mm",
68
- "Poignée crémone",
69
- "Poignée cuvette",
70
- "Poignée de tirage",
71
- "Poignée pour levant coulissant",
72
- "Serrure crémone multipoints",
73
- "Serrure cuvette",
74
- "Serrure gaches",
75
- "Loqueteau",
76
- "Serrure pene crochet",
77
- "Serrure pour porte",
78
- "Serrure tringles",
79
- ]
80
-
81
- data_size = 384
82
- fpn_size = 1536
83
- num_classes = 24
84
- num_selects = {'layer1': 256, 'layer2': 128, 'layer3': 64, 'layer4': 32}
85
- features, grads, module_id_mapper = {}, {}, {}
86
-
87
- def forward_hook(module, inp_hs, out_hs):
88
- layer_id = len(features) + 1
89
- module_id_mapper[module] = layer_id
90
- features[layer_id] = {"in": inp_hs, "out": out_hs}
91
-
92
- def backward_hook(module, inp_grad, out_grad):
93
- layer_id = module_id_mapper[module]
94
- grads[layer_id] = {"in": inp_grad, "out": out_grad}
95
-
96
- def build_model(path: str):
97
- backbone = timm.create_model('swin_large_patch4_window12_384_in22k', pretrained=True)
98
- model = PluginMoodel(
99
- backbone=backbone,
100
- return_nodes=None,
101
- img_size=data_size,
102
- use_fpn=True,
103
- fpn_size=fpn_size,
104
- proj_type="Linear",
105
- upsample_type="Conv",
106
- use_selection=True,
107
- num_classes=num_classes,
108
- num_selects=num_selects,
109
- use_combiner=True,
110
- comb_proj_size=None
111
- )
112
- ckpt = torch.load(path, map_location="cpu", weights_only=False)
113
- model.load_state_dict(ckpt["model"], strict=False)
114
- model.eval()
115
-
116
- for layer in [0, 1, 2, 3]:
117
- model.backbone.layers[layer].register_forward_hook(forward_hook)
118
- model.backbone.layers[layer].register_full_backward_hook(backward_hook)
119
-
120
- for i in range(1, 5):
121
- getattr(model.fpn_down, f'Proj_layer{i}').register_forward_hook(forward_hook)
122
- getattr(model.fpn_down, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
123
- getattr(model.fpn_up, f'Proj_layer{i}').register_forward_hook(forward_hook)
124
- getattr(model.fpn_up, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
125
-
126
- return model
127
-
128
- class ImgLoader:
129
- def __init__(self, img_size):
130
- self.transform = transforms.Compose([
131
- transforms.Resize((510, 510), Image.BILINEAR),
132
- transforms.CenterCrop((img_size, img_size)),
133
- transforms.ToTensor(),
134
- transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
135
- ])
136
-
137
- def load(self, input_img):
138
- if isinstance(input_img, str):
139
- ori_img = cv2.imread(input_img)
140
- img = Image.fromarray(cv2.cvtColor(ori_img, cv2.COLOR_BGR2RGB))
141
- elif isinstance(input_img, Image.Image):
142
- img = input_img
143
- else:
144
- raise ValueError("Image invalide")
145
-
146
- if img.mode != "RGB":
147
- img = img.convert("RGB")
148
-
149
- return self.transform(img).unsqueeze(0)
150
-
151
- def cal_backward(out) -> dict:
152
- target_layer_names = ['layer1', 'layer2', 'layer3', 'layer4',
153
- 'FPN1_layer1', 'FPN1_layer2', 'FPN1_layer3', 'FPN1_layer4', 'comb_outs']
154
-
155
- sum_out = None
156
- for name in target_layer_names:
157
- tmp_out = out[name].mean(1) if name != "comb_outs" else out[name]
158
- tmp_out = torch.softmax(tmp_out, dim=-1)
159
- sum_out = tmp_out if sum_out is None else sum_out + tmp_out
160
-
161
- with torch.no_grad():
162
- smax = torch.softmax(sum_out, dim=-1)
163
- A = np.transpose(np.matlib.repmat(smax[0], num_classes, 1)) - np.eye(num_classes)
164
- _, _, V = np.linalg.svd(A, full_matrices=True)
165
- V = V[num_classes - 1, :]
166
- if V[0] < 0:
167
- V = -V
168
- V = np.log(V)
169
- V = V - min(V)
170
- V = V / sum(V)
171
-
172
- top5_indices = np.argsort(-V)[:5]
173
- top5_scores = -np.sort(-V)[:5]
174
-
175
- # Construction du dictionnaire pour gr.Label
176
- top5_dict = {classes_list[int(idx)]: float(f"{score:.4f}") for idx, score in zip(top5_indices, top5_scores)}
177
- return top5_dict
178
-
179
- # === Chargement du modèle
180
- model = build_model("weights.pt")
181
- img_loader = ImgLoader(data_size)
182
-
183
-
184
-
185
- def predict_image(image: Image.Image):
186
- global features, grads, module_id_mapper
187
- features, grads, module_id_mapper = {}, {}, {}
188
-
189
- if image is None:
190
- return {}
191
- # raise ValueError("Aucune image reçue. Vérifie l'entrée.")
192
-
193
- if image.mode != "RGB":
194
- image = image.convert("RGB")
195
-
196
- image_path = "temp.jpg"
197
- image.save(image_path)
198
-
199
- img_tensor = img_loader.load(image_path)
200
- out = model(img_tensor)
201
- top5_dict = cal_backward(out) # {classe: score}
202
-
203
- gallery_outputs = []
204
- for idx, class_name in enumerate(list(top5_dict.keys())):
205
- images = [
206
- (f"imgs/{class_name}/{class_name}_0001.jpg", f"Exemple {class_name} 1"),
207
- (f"imgs/{class_name}/{class_name}_0002.jpg", f"Exemple {class_name} 2"),
208
- (f"imgs/{class_name}/{class_name}_0003.jpg", f"Exemple {class_name} 3"),
209
- ]
210
- gallery_outputs.append(images)
211
-
212
- return top5_dict, *gallery_outputs
213
-
214
-
215
- # === Interface Gradio
216
- with gr.Blocks(css="""
217
- .gr-image-upload { display: none !important }
218
- .gallery-container .gr-box { height: auto !important; padding: 0 !important; }
219
- """) as demo:
220
- with gr.Row():
221
- with gr.Column(scale=1):
222
- with gr.Tab("Téléversement"):
223
- image_input_upload = gr.Image(type="pil", label="Image à classer (upload)", sources=["upload"])
224
- with gr.Tab("Webcam"):
225
- image_input_webcam = gr.Image(type="pil", label="Image à classer (webcam)", sources=["webcam"])
226
-
227
- with gr.Column(scale=1.5):
228
- label_output = gr.Label(label="Prédictions")
229
- gallery_outputs = [
230
- gr.Gallery(label=f"", columns=3, height=300, container=True, elem_classes=["gallery-container"])
231
- for i in range(5)
232
- ]
233
-
234
- image_input_upload.change(fn=predict_image, inputs=image_input_upload, outputs=[label_output] + gallery_outputs)
235
- image_input_webcam.change(fn=predict_image, inputs=image_input_webcam, outputs=[label_output] + gallery_outputs)
236
-
237
- if __name__ == "__main__":
238
- demo.launch()
239
-