Spaces:
Running
Running
| """ | |
| An implementation of GhostNet Model as defined in: | |
| GhostNet: More Features from Cheap Operations. https://arxiv.org/abs/1911.11907 | |
| The train script of the model is similar to that of MobileNetV3 | |
| Original model: https://github.com/huawei-noah/CV-backbones/tree/master/ghostnet_pytorch | |
| """ | |
| import math | |
| from functools import partial | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| from .layers import SelectAdaptivePool2d, Linear, make_divisible | |
| from .efficientnet_blocks import SqueezeExcite, ConvBnAct | |
| from .helpers import build_model_with_cfg | |
| from .registry import register_model | |
| __all__ = ['GhostNet'] | |
| def _cfg(url='', **kwargs): | |
| return { | |
| 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (1, 1), | |
| 'crop_pct': 0.875, 'interpolation': 'bilinear', | |
| 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
| 'first_conv': 'conv_stem', 'classifier': 'classifier', | |
| **kwargs | |
| } | |
| default_cfgs = { | |
| 'ghostnet_050': _cfg(url=''), | |
| 'ghostnet_100': _cfg( | |
| url='https://github.com/huawei-noah/CV-backbones/releases/download/ghostnet_pth/ghostnet_1x.pth'), | |
| 'ghostnet_130': _cfg(url=''), | |
| } | |
| _SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) | |
| class GhostModule(nn.Module): | |
| def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True): | |
| super(GhostModule, self).__init__() | |
| self.oup = oup | |
| init_channels = math.ceil(oup / ratio) | |
| new_channels = init_channels * (ratio - 1) | |
| self.primary_conv = nn.Sequential( | |
| nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False), | |
| nn.BatchNorm2d(init_channels), | |
| nn.ReLU(inplace=True) if relu else nn.Sequential(), | |
| ) | |
| self.cheap_operation = nn.Sequential( | |
| nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False), | |
| nn.BatchNorm2d(new_channels), | |
| nn.ReLU(inplace=True) if relu else nn.Sequential(), | |
| ) | |
| def forward(self, x): | |
| x1 = self.primary_conv(x) | |
| x2 = self.cheap_operation(x1) | |
| out = torch.cat([x1, x2], dim=1) | |
| return out[:, :self.oup, :, :] | |
| class GhostBottleneck(nn.Module): | |
| """ Ghost bottleneck w/ optional SE""" | |
| def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3, | |
| stride=1, act_layer=nn.ReLU, se_ratio=0.): | |
| super(GhostBottleneck, self).__init__() | |
| has_se = se_ratio is not None and se_ratio > 0. | |
| self.stride = stride | |
| # Point-wise expansion | |
| self.ghost1 = GhostModule(in_chs, mid_chs, relu=True) | |
| # Depth-wise convolution | |
| if self.stride > 1: | |
| self.conv_dw = nn.Conv2d( | |
| mid_chs, mid_chs, dw_kernel_size, stride=stride, | |
| padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) | |
| self.bn_dw = nn.BatchNorm2d(mid_chs) | |
| else: | |
| self.conv_dw = None | |
| self.bn_dw = None | |
| # Squeeze-and-excitation | |
| self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None | |
| # Point-wise linear projection | |
| self.ghost2 = GhostModule(mid_chs, out_chs, relu=False) | |
| # shortcut | |
| if in_chs == out_chs and self.stride == 1: | |
| self.shortcut = nn.Sequential() | |
| else: | |
| self.shortcut = nn.Sequential( | |
| nn.Conv2d( | |
| in_chs, in_chs, dw_kernel_size, stride=stride, | |
| padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), | |
| nn.BatchNorm2d(in_chs), | |
| nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), | |
| nn.BatchNorm2d(out_chs), | |
| ) | |
| def forward(self, x): | |
| shortcut = x | |
| # 1st ghost bottleneck | |
| x = self.ghost1(x) | |
| # Depth-wise convolution | |
| if self.conv_dw is not None: | |
| x = self.conv_dw(x) | |
| x = self.bn_dw(x) | |
| # Squeeze-and-excitation | |
| if self.se is not None: | |
| x = self.se(x) | |
| # 2nd ghost bottleneck | |
| x = self.ghost2(x) | |
| x += self.shortcut(shortcut) | |
| return x | |
| class GhostNet(nn.Module): | |
| def __init__(self, cfgs, num_classes=1000, width=1.0, dropout=0.2, in_chans=3, output_stride=32, global_pool='avg'): | |
| super(GhostNet, self).__init__() | |
| # setting of inverted residual blocks | |
| assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' | |
| self.cfgs = cfgs | |
| self.num_classes = num_classes | |
| self.dropout = dropout | |
| self.feature_info = [] | |
| # building first layer | |
| stem_chs = make_divisible(16 * width, 4) | |
| self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) | |
| self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) | |
| self.bn1 = nn.BatchNorm2d(stem_chs) | |
| self.act1 = nn.ReLU(inplace=True) | |
| prev_chs = stem_chs | |
| # building inverted residual blocks | |
| stages = nn.ModuleList([]) | |
| block = GhostBottleneck | |
| stage_idx = 0 | |
| net_stride = 2 | |
| for cfg in self.cfgs: | |
| layers = [] | |
| s = 1 | |
| for k, exp_size, c, se_ratio, s in cfg: | |
| out_chs = make_divisible(c * width, 4) | |
| mid_chs = make_divisible(exp_size * width, 4) | |
| layers.append(block(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio)) | |
| prev_chs = out_chs | |
| if s > 1: | |
| net_stride *= 2 | |
| self.feature_info.append(dict( | |
| num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) | |
| stages.append(nn.Sequential(*layers)) | |
| stage_idx += 1 | |
| out_chs = make_divisible(exp_size * width, 4) | |
| stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) | |
| self.pool_dim = prev_chs = out_chs | |
| self.blocks = nn.Sequential(*stages) | |
| # building last several layers | |
| self.num_features = out_chs = 1280 | |
| self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) | |
| self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) | |
| self.act2 = nn.ReLU(inplace=True) | |
| self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled | |
| self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() | |
| def get_classifier(self): | |
| return self.classifier | |
| def reset_classifier(self, num_classes, global_pool='avg'): | |
| self.num_classes = num_classes | |
| # cannot meaningfully change pooling of efficient head after creation | |
| self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) | |
| self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled | |
| self.classifier = Linear(self.pool_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| def forward_features(self, x): | |
| x = self.conv_stem(x) | |
| x = self.bn1(x) | |
| x = self.act1(x) | |
| x = self.blocks(x) | |
| x = self.global_pool(x) | |
| x = self.conv_head(x) | |
| x = self.act2(x) | |
| return x | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| x = self.flatten(x) | |
| if self.dropout > 0.: | |
| x = F.dropout(x, p=self.dropout, training=self.training) | |
| x = self.classifier(x) | |
| return x | |
| def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs): | |
| """ | |
| Constructs a GhostNet model | |
| """ | |
| cfgs = [ | |
| # k, t, c, SE, s | |
| # stage1 | |
| [[3, 16, 16, 0, 1]], | |
| # stage2 | |
| [[3, 48, 24, 0, 2]], | |
| [[3, 72, 24, 0, 1]], | |
| # stage3 | |
| [[5, 72, 40, 0.25, 2]], | |
| [[5, 120, 40, 0.25, 1]], | |
| # stage4 | |
| [[3, 240, 80, 0, 2]], | |
| [[3, 200, 80, 0, 1], | |
| [3, 184, 80, 0, 1], | |
| [3, 184, 80, 0, 1], | |
| [3, 480, 112, 0.25, 1], | |
| [3, 672, 112, 0.25, 1] | |
| ], | |
| # stage5 | |
| [[5, 672, 160, 0.25, 2]], | |
| [[5, 960, 160, 0, 1], | |
| [5, 960, 160, 0.25, 1], | |
| [5, 960, 160, 0, 1], | |
| [5, 960, 160, 0.25, 1] | |
| ] | |
| ] | |
| model_kwargs = dict( | |
| cfgs=cfgs, | |
| width=width, | |
| **kwargs, | |
| ) | |
| return build_model_with_cfg( | |
| GhostNet, variant, pretrained, | |
| default_cfg=default_cfgs[variant], | |
| feature_cfg=dict(flatten_sequential=True), | |
| **model_kwargs) | |
| def ghostnet_050(pretrained=False, **kwargs): | |
| """ GhostNet-0.5x """ | |
| model = _create_ghostnet('ghostnet_050', width=0.5, pretrained=pretrained, **kwargs) | |
| return model | |
| def ghostnet_100(pretrained=False, **kwargs): | |
| """ GhostNet-1.0x """ | |
| model = _create_ghostnet('ghostnet_100', width=1.0, pretrained=pretrained, **kwargs) | |
| return model | |
| def ghostnet_130(pretrained=False, **kwargs): | |
| """ GhostNet-1.3x """ | |
| model = _create_ghostnet('ghostnet_130', width=1.3, pretrained=pretrained, **kwargs) | |
| return model | |