Spaces:
Sleeping
Sleeping
| """ ConViT Model | |
| @article{d2021convit, | |
| title={ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases}, | |
| author={d'Ascoli, St{\'e}phane and Touvron, Hugo and Leavitt, Matthew and Morcos, Ari and Biroli, Giulio and Sagun, Levent}, | |
| journal={arXiv preprint arXiv:2103.10697}, | |
| year={2021} | |
| } | |
| Paper link: https://arxiv.org/abs/2103.10697 | |
| Original code: https://github.com/facebookresearch/convit, original copyright below | |
| """ | |
| # Copyright (c) 2015-present, Facebook, Inc. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the CC-by-NC license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # | |
| '''These modules are adapted from those of timm, see | |
| https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
| ''' | |
| import torch | |
| import torch.nn as nn | |
| from functools import partial | |
| import torch.nn.functional as F | |
| from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| from .helpers import build_model_with_cfg | |
| from .layers import DropPath, to_2tuple, trunc_normal_, PatchEmbed, Mlp | |
| from .registry import register_model | |
| from .vision_transformer_hybrid import HybridEmbed | |
| import torch | |
| import torch.nn as nn | |
| def _cfg(url='', **kwargs): | |
| return { | |
| 'url': url, | |
| 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
| 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'fixed_input_size': True, | |
| 'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
| **kwargs | |
| } | |
| default_cfgs = { | |
| # ConViT | |
| 'convit_tiny': _cfg( | |
| url="https://dl.fbaipublicfiles.com/convit/convit_tiny.pth"), | |
| 'convit_small': _cfg( | |
| url="https://dl.fbaipublicfiles.com/convit/convit_small.pth"), | |
| 'convit_base': _cfg( | |
| url="https://dl.fbaipublicfiles.com/convit/convit_base.pth") | |
| } | |
| class GPSA(nn.Module): | |
| def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., | |
| locality_strength=1.): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| self.dim = dim | |
| head_dim = dim // num_heads | |
| self.scale = head_dim ** -0.5 | |
| self.locality_strength = locality_strength | |
| self.qk = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
| self.v = nn.Linear(dim, dim, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.pos_proj = nn.Linear(3, num_heads) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| self.gating_param = nn.Parameter(torch.ones(self.num_heads)) | |
| self.rel_indices: torch.Tensor = torch.zeros(1, 1, 1, 3) # silly torchscript hack, won't work with None | |
| def forward(self, x): | |
| B, N, C = x.shape | |
| if self.rel_indices is None or self.rel_indices.shape[1] != N: | |
| self.rel_indices = self.get_rel_indices(N) | |
| attn = self.get_attention(x) | |
| v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| def get_attention(self, x): | |
| B, N, C = x.shape | |
| qk = self.qk(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| q, k = qk[0], qk[1] | |
| pos_score = self.rel_indices.expand(B, -1, -1, -1) | |
| pos_score = self.pos_proj(pos_score).permute(0, 3, 1, 2) | |
| patch_score = (q @ k.transpose(-2, -1)) * self.scale | |
| patch_score = patch_score.softmax(dim=-1) | |
| pos_score = pos_score.softmax(dim=-1) | |
| gating = self.gating_param.view(1, -1, 1, 1) | |
| attn = (1. - torch.sigmoid(gating)) * patch_score + torch.sigmoid(gating) * pos_score | |
| attn /= attn.sum(dim=-1).unsqueeze(-1) | |
| attn = self.attn_drop(attn) | |
| return attn | |
| def get_attention_map(self, x, return_map=False): | |
| attn_map = self.get_attention(x).mean(0) # average over batch | |
| distances = self.rel_indices.squeeze()[:, :, -1] ** .5 | |
| dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / distances.size(0) | |
| if return_map: | |
| return dist, attn_map | |
| else: | |
| return dist | |
| def local_init(self): | |
| self.v.weight.data.copy_(torch.eye(self.dim)) | |
| locality_distance = 1 # max(1,1/locality_strength**.5) | |
| kernel_size = int(self.num_heads ** .5) | |
| center = (kernel_size - 1) / 2 if kernel_size % 2 == 0 else kernel_size // 2 | |
| for h1 in range(kernel_size): | |
| for h2 in range(kernel_size): | |
| position = h1 + kernel_size * h2 | |
| self.pos_proj.weight.data[position, 2] = -1 | |
| self.pos_proj.weight.data[position, 1] = 2 * (h1 - center) * locality_distance | |
| self.pos_proj.weight.data[position, 0] = 2 * (h2 - center) * locality_distance | |
| self.pos_proj.weight.data *= self.locality_strength | |
| def get_rel_indices(self, num_patches: int) -> torch.Tensor: | |
| img_size = int(num_patches ** .5) | |
| rel_indices = torch.zeros(1, num_patches, num_patches, 3) | |
| ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1) | |
| indx = ind.repeat(img_size, img_size) | |
| indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1) | |
| indd = indx ** 2 + indy ** 2 | |
| rel_indices[:, :, :, 2] = indd.unsqueeze(0) | |
| rel_indices[:, :, :, 1] = indy.unsqueeze(0) | |
| rel_indices[:, :, :, 0] = indx.unsqueeze(0) | |
| device = self.qk.weight.device | |
| return rel_indices.to(device) | |
| class MHSA(nn.Module): | |
| def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = head_dim ** -0.5 | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| def get_attention_map(self, x, return_map=False): | |
| B, N, C = x.shape | |
| qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv[0], qkv[1], qkv[2] | |
| attn_map = (q @ k.transpose(-2, -1)) * self.scale | |
| attn_map = attn_map.softmax(dim=-1).mean(0) | |
| img_size = int(N ** .5) | |
| ind = torch.arange(img_size).view(1, -1) - torch.arange(img_size).view(-1, 1) | |
| indx = ind.repeat(img_size, img_size) | |
| indy = ind.repeat_interleave(img_size, dim=0).repeat_interleave(img_size, dim=1) | |
| indd = indx ** 2 + indy ** 2 | |
| distances = indd ** .5 | |
| distances = distances.to('cuda') | |
| dist = torch.einsum('nm,hnm->h', (distances, attn_map)) / N | |
| if return_map: | |
| return dist, attn_map | |
| else: | |
| return dist | |
| def forward(self, x): | |
| B, N, C = x.shape | |
| qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv[0], qkv[1], qkv[2] | |
| attn = (q @ k.transpose(-2, -1)) * self.scale | |
| attn = attn.softmax(dim=-1) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| class Block(nn.Module): | |
| def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
| drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_gpsa=True, **kwargs): | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.use_gpsa = use_gpsa | |
| if self.use_gpsa: | |
| self.attn = GPSA( | |
| dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, **kwargs) | |
| else: | |
| self.attn = MHSA(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
| def forward(self, x): | |
| x = x + self.drop_path(self.attn(self.norm1(x))) | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| return x | |
| class ConViT(nn.Module): | |
| """ Vision Transformer with support for patch or hybrid CNN input stage | |
| """ | |
| def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
| num_heads=12, mlp_ratio=4., qkv_bias=False, drop_rate=0., attn_drop_rate=0., | |
| drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, global_pool=None, | |
| local_up_to_layer=3, locality_strength=1., use_pos_embed=True): | |
| super().__init__() | |
| embed_dim *= num_heads | |
| self.num_classes = num_classes | |
| self.local_up_to_layer = local_up_to_layer | |
| self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
| self.locality_strength = locality_strength | |
| self.use_pos_embed = use_pos_embed | |
| if hybrid_backbone is not None: | |
| self.patch_embed = HybridEmbed( | |
| hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) | |
| else: | |
| self.patch_embed = PatchEmbed( | |
| img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
| num_patches = self.patch_embed.num_patches | |
| self.num_patches = num_patches | |
| self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
| self.pos_drop = nn.Dropout(p=drop_rate) | |
| if self.use_pos_embed: | |
| self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | |
| trunc_normal_(self.pos_embed, std=.02) | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
| self.blocks = nn.ModuleList([ | |
| Block( | |
| dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, | |
| use_gpsa=True, | |
| locality_strength=locality_strength) | |
| if i < local_up_to_layer else | |
| Block( | |
| dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, | |
| drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, | |
| use_gpsa=False) | |
| for i in range(depth)]) | |
| self.norm = norm_layer(embed_dim) | |
| # Classifier head | |
| self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')] | |
| self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| trunc_normal_(self.cls_token, std=.02) | |
| self.apply(self._init_weights) | |
| for n, m in self.named_modules(): | |
| if hasattr(m, 'local_init'): | |
| m.local_init() | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def no_weight_decay(self): | |
| return {'pos_embed', 'cls_token'} | |
| def get_classifier(self): | |
| return self.head | |
| def reset_classifier(self, num_classes, global_pool=''): | |
| self.num_classes = num_classes | |
| self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
| def forward_features(self, x): | |
| B = x.shape[0] | |
| x = self.patch_embed(x) | |
| cls_tokens = self.cls_token.expand(B, -1, -1) | |
| if self.use_pos_embed: | |
| x = x + self.pos_embed | |
| x = self.pos_drop(x) | |
| for u, blk in enumerate(self.blocks): | |
| if u == self.local_up_to_layer: | |
| x = torch.cat((cls_tokens, x), dim=1) | |
| x = blk(x) | |
| x = self.norm(x) | |
| return x[:, 0] | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| x = self.head(x) | |
| return x | |
| def _create_convit(variant, pretrained=False, **kwargs): | |
| if kwargs.get('features_only', None): | |
| raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
| return build_model_with_cfg( | |
| ConViT, variant, pretrained, | |
| default_cfg=default_cfgs[variant], | |
| **kwargs) | |
| def convit_tiny(pretrained=False, **kwargs): | |
| model_args = dict( | |
| local_up_to_layer=10, locality_strength=1.0, embed_dim=48, | |
| num_heads=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
| model = _create_convit(variant='convit_tiny', pretrained=pretrained, **model_args) | |
| return model | |
| def convit_small(pretrained=False, **kwargs): | |
| model_args = dict( | |
| local_up_to_layer=10, locality_strength=1.0, embed_dim=48, | |
| num_heads=9, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
| model = _create_convit(variant='convit_small', pretrained=pretrained, **model_args) | |
| return model | |
| def convit_base(pretrained=False, **kwargs): | |
| model_args = dict( | |
| local_up_to_layer=10, locality_strength=1.0, embed_dim=48, | |
| num_heads=16, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
| model = _create_convit(variant='convit_base', pretrained=pretrained, **model_args) | |
| return model | |