Spaces:
Running
Running
Upload model_cfm.py
Browse files- model/model_cfm.py +279 -0
model/model_cfm.py
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
ein notation:
|
| 3 |
+
b - batch
|
| 4 |
+
n - sequence
|
| 5 |
+
nt - text sequence
|
| 6 |
+
nw - raw wave length
|
| 7 |
+
d - dimension
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
from __future__ import annotations
|
| 11 |
+
from typing import Callable
|
| 12 |
+
from random import random
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
from torch import nn
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 18 |
+
|
| 19 |
+
from torchdiffeq import odeint
|
| 20 |
+
|
| 21 |
+
from einops import rearrange
|
| 22 |
+
|
| 23 |
+
from model.modules import MelSpec
|
| 24 |
+
|
| 25 |
+
from model.utils import (
|
| 26 |
+
default, exists,
|
| 27 |
+
list_str_to_idx, list_str_to_tensor,
|
| 28 |
+
lens_to_mask, mask_from_frac_lengths,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class CFM(nn.Module):
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
transformer: nn.Module,
|
| 36 |
+
sigma = 0.,
|
| 37 |
+
odeint_kwargs: dict = dict(
|
| 38 |
+
# atol = 1e-5,
|
| 39 |
+
# rtol = 1e-5,
|
| 40 |
+
method = 'euler' # 'midpoint'
|
| 41 |
+
),
|
| 42 |
+
audio_drop_prob = 0.3,
|
| 43 |
+
cond_drop_prob = 0.2,
|
| 44 |
+
num_channels = None,
|
| 45 |
+
mel_spec_module: nn.Module | None = None,
|
| 46 |
+
mel_spec_kwargs: dict = dict(),
|
| 47 |
+
frac_lengths_mask: tuple[float, float] = (0.7, 1.),
|
| 48 |
+
vocab_char_map: dict[str: int] | None = None
|
| 49 |
+
):
|
| 50 |
+
super().__init__()
|
| 51 |
+
|
| 52 |
+
self.frac_lengths_mask = frac_lengths_mask
|
| 53 |
+
|
| 54 |
+
# mel spec
|
| 55 |
+
self.mel_spec = default(mel_spec_module, MelSpec(**mel_spec_kwargs))
|
| 56 |
+
num_channels = default(num_channels, self.mel_spec.n_mel_channels)
|
| 57 |
+
self.num_channels = num_channels
|
| 58 |
+
|
| 59 |
+
# classifier-free guidance
|
| 60 |
+
self.audio_drop_prob = audio_drop_prob
|
| 61 |
+
self.cond_drop_prob = cond_drop_prob
|
| 62 |
+
|
| 63 |
+
# transformer
|
| 64 |
+
self.transformer = transformer
|
| 65 |
+
dim = transformer.dim
|
| 66 |
+
self.dim = dim
|
| 67 |
+
|
| 68 |
+
# conditional flow related
|
| 69 |
+
self.sigma = sigma
|
| 70 |
+
|
| 71 |
+
# sampling related
|
| 72 |
+
self.odeint_kwargs = odeint_kwargs
|
| 73 |
+
|
| 74 |
+
# vocab map for tokenization
|
| 75 |
+
self.vocab_char_map = vocab_char_map
|
| 76 |
+
|
| 77 |
+
@property
|
| 78 |
+
def device(self):
|
| 79 |
+
return next(self.parameters()).device
|
| 80 |
+
|
| 81 |
+
@torch.no_grad()
|
| 82 |
+
def sample(
|
| 83 |
+
self,
|
| 84 |
+
cond: float['b n d'] | float['b nw'],
|
| 85 |
+
text: int['b nt'] | list[str],
|
| 86 |
+
duration: int | int['b'],
|
| 87 |
+
*,
|
| 88 |
+
lens: int['b'] | None = None,
|
| 89 |
+
steps = 32,
|
| 90 |
+
cfg_strength = 1.,
|
| 91 |
+
sway_sampling_coef = None,
|
| 92 |
+
seed: int | None = None,
|
| 93 |
+
max_duration = 4096,
|
| 94 |
+
vocoder: Callable[[float['b d n']], float['b nw']] | None = None,
|
| 95 |
+
no_ref_audio = False,
|
| 96 |
+
duplicate_test = False,
|
| 97 |
+
t_inter = 0.1,
|
| 98 |
+
edit_mask = None,
|
| 99 |
+
):
|
| 100 |
+
self.eval()
|
| 101 |
+
|
| 102 |
+
# raw wave
|
| 103 |
+
|
| 104 |
+
if cond.ndim == 2:
|
| 105 |
+
cond = self.mel_spec(cond)
|
| 106 |
+
cond = rearrange(cond, 'b d n -> b n d')
|
| 107 |
+
assert cond.shape[-1] == self.num_channels
|
| 108 |
+
|
| 109 |
+
batch, cond_seq_len, device = *cond.shape[:2], cond.device
|
| 110 |
+
if not exists(lens):
|
| 111 |
+
lens = torch.full((batch,), cond_seq_len, device = device, dtype = torch.long)
|
| 112 |
+
|
| 113 |
+
# text
|
| 114 |
+
|
| 115 |
+
if isinstance(text, list):
|
| 116 |
+
if exists(self.vocab_char_map):
|
| 117 |
+
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
| 118 |
+
else:
|
| 119 |
+
text = list_str_to_tensor(text).to(device)
|
| 120 |
+
assert text.shape[0] == batch
|
| 121 |
+
|
| 122 |
+
if exists(text):
|
| 123 |
+
text_lens = (text != -1).sum(dim = -1)
|
| 124 |
+
lens = torch.maximum(text_lens, lens) # make sure lengths are at least those of the text characters
|
| 125 |
+
|
| 126 |
+
# duration
|
| 127 |
+
|
| 128 |
+
cond_mask = lens_to_mask(lens)
|
| 129 |
+
if edit_mask is not None:
|
| 130 |
+
cond_mask = cond_mask & edit_mask
|
| 131 |
+
|
| 132 |
+
if isinstance(duration, int):
|
| 133 |
+
duration = torch.full((batch,), duration, device = device, dtype = torch.long)
|
| 134 |
+
|
| 135 |
+
duration = torch.maximum(lens + 1, duration) # just add one token so something is generated
|
| 136 |
+
duration = duration.clamp(max = max_duration)
|
| 137 |
+
max_duration = duration.amax()
|
| 138 |
+
|
| 139 |
+
# duplicate test corner for inner time step oberservation
|
| 140 |
+
if duplicate_test:
|
| 141 |
+
test_cond = F.pad(cond, (0, 0, cond_seq_len, max_duration - 2*cond_seq_len), value = 0.)
|
| 142 |
+
|
| 143 |
+
cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value = 0.)
|
| 144 |
+
cond_mask = F.pad(cond_mask, (0, max_duration - cond_mask.shape[-1]), value = False)
|
| 145 |
+
cond_mask = rearrange(cond_mask, '... -> ... 1')
|
| 146 |
+
step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond)) # allow direct control (cut cond audio) with lens passed in
|
| 147 |
+
|
| 148 |
+
if batch > 1:
|
| 149 |
+
mask = lens_to_mask(duration)
|
| 150 |
+
else: # save memory and speed up, as single inference need no mask currently
|
| 151 |
+
mask = None
|
| 152 |
+
|
| 153 |
+
# test for no ref audio
|
| 154 |
+
if no_ref_audio:
|
| 155 |
+
cond = torch.zeros_like(cond)
|
| 156 |
+
|
| 157 |
+
# neural ode
|
| 158 |
+
|
| 159 |
+
def fn(t, x):
|
| 160 |
+
# at each step, conditioning is fixed
|
| 161 |
+
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
|
| 162 |
+
|
| 163 |
+
# predict flow
|
| 164 |
+
pred = self.transformer(x = x, cond = step_cond, text = text, time = t, mask = mask, drop_audio_cond = False, drop_text = False)
|
| 165 |
+
if cfg_strength < 1e-5:
|
| 166 |
+
return pred
|
| 167 |
+
|
| 168 |
+
null_pred = self.transformer(x = x, cond = step_cond, text = text, time = t, mask = mask, drop_audio_cond = True, drop_text = True)
|
| 169 |
+
return pred + (pred - null_pred) * cfg_strength
|
| 170 |
+
|
| 171 |
+
# noise input
|
| 172 |
+
# to make sure batch inference result is same with different batch size, and for sure single inference
|
| 173 |
+
# still some difference maybe due to convolutional layers
|
| 174 |
+
y0 = []
|
| 175 |
+
for dur in duration:
|
| 176 |
+
if exists(seed):
|
| 177 |
+
torch.manual_seed(seed)
|
| 178 |
+
y0.append(torch.randn(dur, self.num_channels, device = self.device))
|
| 179 |
+
y0 = pad_sequence(y0, padding_value = 0, batch_first = True)
|
| 180 |
+
|
| 181 |
+
t_start = 0
|
| 182 |
+
|
| 183 |
+
# duplicate test corner for inner time step oberservation
|
| 184 |
+
if duplicate_test:
|
| 185 |
+
t_start = t_inter
|
| 186 |
+
y0 = (1 - t_start) * y0 + t_start * test_cond
|
| 187 |
+
steps = int(steps * (1 - t_start))
|
| 188 |
+
|
| 189 |
+
t = torch.linspace(t_start, 1, steps, device = self.device)
|
| 190 |
+
if sway_sampling_coef is not None:
|
| 191 |
+
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
| 192 |
+
|
| 193 |
+
trajectory = odeint(fn, y0, t, **self.odeint_kwargs)
|
| 194 |
+
|
| 195 |
+
sampled = trajectory[-1]
|
| 196 |
+
out = sampled
|
| 197 |
+
out = torch.where(cond_mask, cond, out)
|
| 198 |
+
|
| 199 |
+
if exists(vocoder):
|
| 200 |
+
out = rearrange(out, 'b n d -> b d n')
|
| 201 |
+
out = vocoder(out)
|
| 202 |
+
|
| 203 |
+
return out, trajectory
|
| 204 |
+
|
| 205 |
+
def forward(
|
| 206 |
+
self,
|
| 207 |
+
inp: float['b n d'] | float['b nw'], # mel or raw wave
|
| 208 |
+
text: int['b nt'] | list[str],
|
| 209 |
+
*,
|
| 210 |
+
lens: int['b'] | None = None,
|
| 211 |
+
noise_scheduler: str | None = None,
|
| 212 |
+
):
|
| 213 |
+
# handle raw wave
|
| 214 |
+
if inp.ndim == 2:
|
| 215 |
+
inp = self.mel_spec(inp)
|
| 216 |
+
inp = rearrange(inp, 'b d n -> b n d')
|
| 217 |
+
assert inp.shape[-1] == self.num_channels
|
| 218 |
+
|
| 219 |
+
batch, seq_len, dtype, device, σ1 = *inp.shape[:2], inp.dtype, self.device, self.sigma
|
| 220 |
+
|
| 221 |
+
# handle text as string
|
| 222 |
+
if isinstance(text, list):
|
| 223 |
+
if exists(self.vocab_char_map):
|
| 224 |
+
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
| 225 |
+
else:
|
| 226 |
+
text = list_str_to_tensor(text).to(device)
|
| 227 |
+
assert text.shape[0] == batch
|
| 228 |
+
|
| 229 |
+
# lens and mask
|
| 230 |
+
if not exists(lens):
|
| 231 |
+
lens = torch.full((batch,), seq_len, device = device)
|
| 232 |
+
|
| 233 |
+
mask = lens_to_mask(lens, length = seq_len) # useless here, as collate_fn will pad to max length in batch
|
| 234 |
+
|
| 235 |
+
# get a random span to mask out for training conditionally
|
| 236 |
+
frac_lengths = torch.zeros((batch,), device = self.device).float().uniform_(*self.frac_lengths_mask)
|
| 237 |
+
rand_span_mask = mask_from_frac_lengths(lens, frac_lengths)
|
| 238 |
+
|
| 239 |
+
if exists(mask):
|
| 240 |
+
rand_span_mask &= mask
|
| 241 |
+
|
| 242 |
+
# mel is x1
|
| 243 |
+
x1 = inp
|
| 244 |
+
|
| 245 |
+
# x0 is gaussian noise
|
| 246 |
+
x0 = torch.randn_like(x1)
|
| 247 |
+
|
| 248 |
+
# time step
|
| 249 |
+
time = torch.rand((batch,), dtype = dtype, device = self.device)
|
| 250 |
+
# TODO. noise_scheduler
|
| 251 |
+
|
| 252 |
+
# sample xt (φ_t(x) in the paper)
|
| 253 |
+
t = rearrange(time, 'b -> b 1 1')
|
| 254 |
+
φ = (1 - t) * x0 + t * x1
|
| 255 |
+
flow = x1 - x0
|
| 256 |
+
|
| 257 |
+
# only predict what is within the random mask span for infilling
|
| 258 |
+
cond = torch.where(
|
| 259 |
+
rand_span_mask[..., None],
|
| 260 |
+
torch.zeros_like(x1), x1
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
# transformer and cfg training with a drop rate
|
| 264 |
+
drop_audio_cond = random() < self.audio_drop_prob # p_drop in voicebox paper
|
| 265 |
+
if random() < self.cond_drop_prob: # p_uncond in voicebox paper
|
| 266 |
+
drop_audio_cond = True
|
| 267 |
+
drop_text = True
|
| 268 |
+
else:
|
| 269 |
+
drop_text = False
|
| 270 |
+
|
| 271 |
+
# if want rigourously mask out padding, record in collate_fn in dataset.py, and pass in here
|
| 272 |
+
# adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences
|
| 273 |
+
pred = self.transformer(x = φ, cond = cond, text = text, time = time, drop_audio_cond = drop_audio_cond, drop_text = drop_text)
|
| 274 |
+
|
| 275 |
+
# flow matching loss
|
| 276 |
+
loss = F.mse_loss(pred, flow, reduction = 'none')
|
| 277 |
+
loss = loss[rand_span_mask]
|
| 278 |
+
|
| 279 |
+
return loss.mean(), cond, pred
|