Spaces:
Running
Running
Delete model/trainer.py
Browse files- model/trainer.py +0 -353
model/trainer.py
DELETED
|
@@ -1,353 +0,0 @@
|
|
| 1 |
-
from __future__ import annotations
|
| 2 |
-
|
| 3 |
-
import gc
|
| 4 |
-
import os
|
| 5 |
-
|
| 6 |
-
import torch
|
| 7 |
-
import torchaudio
|
| 8 |
-
import wandb
|
| 9 |
-
from accelerate import Accelerator
|
| 10 |
-
from accelerate.utils import DistributedDataParallelKwargs
|
| 11 |
-
from ema_pytorch import EMA
|
| 12 |
-
from torch.optim import AdamW
|
| 13 |
-
from torch.optim.lr_scheduler import LinearLR, SequentialLR
|
| 14 |
-
from torch.utils.data import DataLoader, Dataset, SequentialSampler
|
| 15 |
-
from tqdm import tqdm
|
| 16 |
-
|
| 17 |
-
from f5_tts.model import CFM
|
| 18 |
-
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
| 19 |
-
from f5_tts.model.utils import default, exists
|
| 20 |
-
|
| 21 |
-
# trainer
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
class Trainer:
|
| 25 |
-
def __init__(
|
| 26 |
-
self,
|
| 27 |
-
model: CFM,
|
| 28 |
-
epochs,
|
| 29 |
-
learning_rate,
|
| 30 |
-
num_warmup_updates=20000,
|
| 31 |
-
save_per_updates=1000,
|
| 32 |
-
checkpoint_path=None,
|
| 33 |
-
batch_size=32,
|
| 34 |
-
batch_size_type: str = "sample",
|
| 35 |
-
max_samples=32,
|
| 36 |
-
grad_accumulation_steps=1,
|
| 37 |
-
max_grad_norm=1.0,
|
| 38 |
-
noise_scheduler: str | None = None,
|
| 39 |
-
duration_predictor: torch.nn.Module | None = None,
|
| 40 |
-
logger: str | None = "wandb", # "wandb" | "tensorboard" | None
|
| 41 |
-
wandb_project="test_e2-tts",
|
| 42 |
-
wandb_run_name="test_run",
|
| 43 |
-
wandb_resume_id: str = None,
|
| 44 |
-
log_samples: bool = False,
|
| 45 |
-
last_per_steps=None,
|
| 46 |
-
accelerate_kwargs: dict = dict(),
|
| 47 |
-
ema_kwargs: dict = dict(),
|
| 48 |
-
bnb_optimizer: bool = False,
|
| 49 |
-
mel_spec_type: str = "vocos", # "vocos" | "bigvgan"
|
| 50 |
-
):
|
| 51 |
-
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
| 52 |
-
|
| 53 |
-
if logger == "wandb" and not wandb.api.api_key:
|
| 54 |
-
logger = None
|
| 55 |
-
print(f"Using logger: {logger}")
|
| 56 |
-
self.log_samples = log_samples
|
| 57 |
-
|
| 58 |
-
self.accelerator = Accelerator(
|
| 59 |
-
log_with=logger if logger == "wandb" else None,
|
| 60 |
-
kwargs_handlers=[ddp_kwargs],
|
| 61 |
-
gradient_accumulation_steps=grad_accumulation_steps,
|
| 62 |
-
**accelerate_kwargs,
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
self.logger = logger
|
| 66 |
-
if self.logger == "wandb":
|
| 67 |
-
if exists(wandb_resume_id):
|
| 68 |
-
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
|
| 69 |
-
else:
|
| 70 |
-
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
|
| 71 |
-
|
| 72 |
-
self.accelerator.init_trackers(
|
| 73 |
-
project_name=wandb_project,
|
| 74 |
-
init_kwargs=init_kwargs,
|
| 75 |
-
config={
|
| 76 |
-
"epochs": epochs,
|
| 77 |
-
"learning_rate": learning_rate,
|
| 78 |
-
"num_warmup_updates": num_warmup_updates,
|
| 79 |
-
"batch_size": batch_size,
|
| 80 |
-
"batch_size_type": batch_size_type,
|
| 81 |
-
"max_samples": max_samples,
|
| 82 |
-
"grad_accumulation_steps": grad_accumulation_steps,
|
| 83 |
-
"max_grad_norm": max_grad_norm,
|
| 84 |
-
"gpus": self.accelerator.num_processes,
|
| 85 |
-
"noise_scheduler": noise_scheduler,
|
| 86 |
-
},
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
elif self.logger == "tensorboard":
|
| 90 |
-
from torch.utils.tensorboard import SummaryWriter
|
| 91 |
-
|
| 92 |
-
self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}")
|
| 93 |
-
|
| 94 |
-
self.model = model
|
| 95 |
-
|
| 96 |
-
if self.is_main:
|
| 97 |
-
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
|
| 98 |
-
self.ema_model.to(self.accelerator.device)
|
| 99 |
-
|
| 100 |
-
self.epochs = epochs
|
| 101 |
-
self.num_warmup_updates = num_warmup_updates
|
| 102 |
-
self.save_per_updates = save_per_updates
|
| 103 |
-
self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps)
|
| 104 |
-
self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts")
|
| 105 |
-
|
| 106 |
-
self.batch_size = batch_size
|
| 107 |
-
self.batch_size_type = batch_size_type
|
| 108 |
-
self.max_samples = max_samples
|
| 109 |
-
self.grad_accumulation_steps = grad_accumulation_steps
|
| 110 |
-
self.max_grad_norm = max_grad_norm
|
| 111 |
-
self.vocoder_name = mel_spec_type
|
| 112 |
-
|
| 113 |
-
self.noise_scheduler = noise_scheduler
|
| 114 |
-
|
| 115 |
-
self.duration_predictor = duration_predictor
|
| 116 |
-
|
| 117 |
-
if bnb_optimizer:
|
| 118 |
-
import bitsandbytes as bnb
|
| 119 |
-
|
| 120 |
-
self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate)
|
| 121 |
-
else:
|
| 122 |
-
self.optimizer = AdamW(model.parameters(), lr=learning_rate)
|
| 123 |
-
self.model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer)
|
| 124 |
-
|
| 125 |
-
@property
|
| 126 |
-
def is_main(self):
|
| 127 |
-
return self.accelerator.is_main_process
|
| 128 |
-
|
| 129 |
-
def save_checkpoint(self, step, last=False):
|
| 130 |
-
self.accelerator.wait_for_everyone()
|
| 131 |
-
if self.is_main:
|
| 132 |
-
checkpoint = dict(
|
| 133 |
-
model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(),
|
| 134 |
-
optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(),
|
| 135 |
-
ema_model_state_dict=self.ema_model.state_dict(),
|
| 136 |
-
scheduler_state_dict=self.scheduler.state_dict(),
|
| 137 |
-
step=step,
|
| 138 |
-
)
|
| 139 |
-
if not os.path.exists(self.checkpoint_path):
|
| 140 |
-
os.makedirs(self.checkpoint_path)
|
| 141 |
-
if last:
|
| 142 |
-
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt")
|
| 143 |
-
print(f"Saved last checkpoint at step {step}")
|
| 144 |
-
else:
|
| 145 |
-
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt")
|
| 146 |
-
|
| 147 |
-
def load_checkpoint(self):
|
| 148 |
-
if (
|
| 149 |
-
not exists(self.checkpoint_path)
|
| 150 |
-
or not os.path.exists(self.checkpoint_path)
|
| 151 |
-
or not os.listdir(self.checkpoint_path)
|
| 152 |
-
):
|
| 153 |
-
return 0
|
| 154 |
-
|
| 155 |
-
self.accelerator.wait_for_everyone()
|
| 156 |
-
if "model_last.pt" in os.listdir(self.checkpoint_path):
|
| 157 |
-
latest_checkpoint = "model_last.pt"
|
| 158 |
-
else:
|
| 159 |
-
latest_checkpoint = sorted(
|
| 160 |
-
[f for f in os.listdir(self.checkpoint_path) if f.endswith(".pt")],
|
| 161 |
-
key=lambda x: int("".join(filter(str.isdigit, x))),
|
| 162 |
-
)[-1]
|
| 163 |
-
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ
|
| 164 |
-
checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu")
|
| 165 |
-
|
| 166 |
-
# patch for backward compatibility, 305e3ea
|
| 167 |
-
for key in ["ema_model.mel_spec.mel_stft.mel_scale.fb", "ema_model.mel_spec.mel_stft.spectrogram.window"]:
|
| 168 |
-
if key in checkpoint["ema_model_state_dict"]:
|
| 169 |
-
del checkpoint["ema_model_state_dict"][key]
|
| 170 |
-
|
| 171 |
-
if self.is_main:
|
| 172 |
-
self.ema_model.load_state_dict(checkpoint["ema_model_state_dict"])
|
| 173 |
-
|
| 174 |
-
if "step" in checkpoint:
|
| 175 |
-
# patch for backward compatibility, 305e3ea
|
| 176 |
-
for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
|
| 177 |
-
if key in checkpoint["model_state_dict"]:
|
| 178 |
-
del checkpoint["model_state_dict"][key]
|
| 179 |
-
|
| 180 |
-
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
|
| 181 |
-
self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint["optimizer_state_dict"])
|
| 182 |
-
if self.scheduler:
|
| 183 |
-
self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
|
| 184 |
-
step = checkpoint["step"]
|
| 185 |
-
else:
|
| 186 |
-
checkpoint["model_state_dict"] = {
|
| 187 |
-
k.replace("ema_model.", ""): v
|
| 188 |
-
for k, v in checkpoint["ema_model_state_dict"].items()
|
| 189 |
-
if k not in ["initted", "step"]
|
| 190 |
-
}
|
| 191 |
-
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
|
| 192 |
-
step = 0
|
| 193 |
-
|
| 194 |
-
del checkpoint
|
| 195 |
-
gc.collect()
|
| 196 |
-
return step
|
| 197 |
-
|
| 198 |
-
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
| 199 |
-
if self.log_samples:
|
| 200 |
-
from f5_tts.infer.utils_infer import cfg_strength, load_vocoder, nfe_step, sway_sampling_coef
|
| 201 |
-
|
| 202 |
-
vocoder = load_vocoder(vocoder_name=self.vocoder_name)
|
| 203 |
-
target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.target_sample_rate
|
| 204 |
-
log_samples_path = f"{self.checkpoint_path}/samples"
|
| 205 |
-
os.makedirs(log_samples_path, exist_ok=True)
|
| 206 |
-
|
| 207 |
-
if exists(resumable_with_seed):
|
| 208 |
-
generator = torch.Generator()
|
| 209 |
-
generator.manual_seed(resumable_with_seed)
|
| 210 |
-
else:
|
| 211 |
-
generator = None
|
| 212 |
-
|
| 213 |
-
if self.batch_size_type == "sample":
|
| 214 |
-
train_dataloader = DataLoader(
|
| 215 |
-
train_dataset,
|
| 216 |
-
collate_fn=collate_fn,
|
| 217 |
-
num_workers=num_workers,
|
| 218 |
-
pin_memory=True,
|
| 219 |
-
persistent_workers=True,
|
| 220 |
-
batch_size=self.batch_size,
|
| 221 |
-
shuffle=True,
|
| 222 |
-
generator=generator,
|
| 223 |
-
)
|
| 224 |
-
elif self.batch_size_type == "frame":
|
| 225 |
-
self.accelerator.even_batches = False
|
| 226 |
-
sampler = SequentialSampler(train_dataset)
|
| 227 |
-
batch_sampler = DynamicBatchSampler(
|
| 228 |
-
sampler, self.batch_size, max_samples=self.max_samples, random_seed=resumable_with_seed, drop_last=False
|
| 229 |
-
)
|
| 230 |
-
train_dataloader = DataLoader(
|
| 231 |
-
train_dataset,
|
| 232 |
-
collate_fn=collate_fn,
|
| 233 |
-
num_workers=num_workers,
|
| 234 |
-
pin_memory=True,
|
| 235 |
-
persistent_workers=True,
|
| 236 |
-
batch_sampler=batch_sampler,
|
| 237 |
-
)
|
| 238 |
-
else:
|
| 239 |
-
raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}")
|
| 240 |
-
|
| 241 |
-
# accelerator.prepare() dispatches batches to devices;
|
| 242 |
-
# which means the length of dataloader calculated before, should consider the number of devices
|
| 243 |
-
warmup_steps = (
|
| 244 |
-
self.num_warmup_updates * self.accelerator.num_processes
|
| 245 |
-
) # consider a fixed warmup steps while using accelerate multi-gpu ddp
|
| 246 |
-
# otherwise by default with split_batches=False, warmup steps change with num_processes
|
| 247 |
-
total_steps = len(train_dataloader) * self.epochs / self.grad_accumulation_steps
|
| 248 |
-
decay_steps = total_steps - warmup_steps
|
| 249 |
-
warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps)
|
| 250 |
-
decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps)
|
| 251 |
-
self.scheduler = SequentialLR(
|
| 252 |
-
self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_steps]
|
| 253 |
-
)
|
| 254 |
-
train_dataloader, self.scheduler = self.accelerator.prepare(
|
| 255 |
-
train_dataloader, self.scheduler
|
| 256 |
-
) # actual steps = 1 gpu steps / gpus
|
| 257 |
-
start_step = self.load_checkpoint()
|
| 258 |
-
global_step = start_step
|
| 259 |
-
|
| 260 |
-
if exists(resumable_with_seed):
|
| 261 |
-
orig_epoch_step = len(train_dataloader)
|
| 262 |
-
skipped_epoch = int(start_step // orig_epoch_step)
|
| 263 |
-
skipped_batch = start_step % orig_epoch_step
|
| 264 |
-
skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch)
|
| 265 |
-
else:
|
| 266 |
-
skipped_epoch = 0
|
| 267 |
-
|
| 268 |
-
for epoch in range(skipped_epoch, self.epochs):
|
| 269 |
-
self.model.train()
|
| 270 |
-
if exists(resumable_with_seed) and epoch == skipped_epoch:
|
| 271 |
-
progress_bar = tqdm(
|
| 272 |
-
skipped_dataloader,
|
| 273 |
-
desc=f"Epoch {epoch+1}/{self.epochs}",
|
| 274 |
-
unit="step",
|
| 275 |
-
disable=not self.accelerator.is_local_main_process,
|
| 276 |
-
initial=skipped_batch,
|
| 277 |
-
total=orig_epoch_step,
|
| 278 |
-
)
|
| 279 |
-
else:
|
| 280 |
-
progress_bar = tqdm(
|
| 281 |
-
train_dataloader,
|
| 282 |
-
desc=f"Epoch {epoch+1}/{self.epochs}",
|
| 283 |
-
unit="step",
|
| 284 |
-
disable=not self.accelerator.is_local_main_process,
|
| 285 |
-
)
|
| 286 |
-
|
| 287 |
-
for batch in progress_bar:
|
| 288 |
-
with self.accelerator.accumulate(self.model):
|
| 289 |
-
text_inputs = batch["text"]
|
| 290 |
-
mel_spec = batch["mel"].permute(0, 2, 1)
|
| 291 |
-
mel_lengths = batch["mel_lengths"]
|
| 292 |
-
|
| 293 |
-
# TODO. add duration predictor training
|
| 294 |
-
if self.duration_predictor is not None and self.accelerator.is_local_main_process:
|
| 295 |
-
dur_loss = self.duration_predictor(mel_spec, lens=batch.get("durations"))
|
| 296 |
-
self.accelerator.log({"duration loss": dur_loss.item()}, step=global_step)
|
| 297 |
-
|
| 298 |
-
loss, cond, pred = self.model(
|
| 299 |
-
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
|
| 300 |
-
)
|
| 301 |
-
self.accelerator.backward(loss)
|
| 302 |
-
|
| 303 |
-
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
|
| 304 |
-
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
|
| 305 |
-
|
| 306 |
-
self.optimizer.step()
|
| 307 |
-
self.scheduler.step()
|
| 308 |
-
self.optimizer.zero_grad()
|
| 309 |
-
|
| 310 |
-
if self.is_main:
|
| 311 |
-
self.ema_model.update()
|
| 312 |
-
|
| 313 |
-
global_step += 1
|
| 314 |
-
|
| 315 |
-
if self.accelerator.is_local_main_process:
|
| 316 |
-
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
|
| 317 |
-
if self.logger == "tensorboard":
|
| 318 |
-
self.writer.add_scalar("loss", loss.item(), global_step)
|
| 319 |
-
self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], global_step)
|
| 320 |
-
|
| 321 |
-
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
|
| 322 |
-
|
| 323 |
-
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0:
|
| 324 |
-
self.save_checkpoint(global_step)
|
| 325 |
-
|
| 326 |
-
if self.log_samples and self.accelerator.is_local_main_process:
|
| 327 |
-
ref_audio, ref_audio_len = vocoder.decode(batch["mel"][0].unsqueeze(0)), mel_lengths[0]
|
| 328 |
-
torchaudio.save(
|
| 329 |
-
f"{log_samples_path}/step_{global_step}_ref.wav", ref_audio.cpu(), target_sample_rate
|
| 330 |
-
)
|
| 331 |
-
with torch.inference_mode():
|
| 332 |
-
generated, _ = self.accelerator.unwrap_model(self.model).sample(
|
| 333 |
-
cond=mel_spec[0][:ref_audio_len].unsqueeze(0),
|
| 334 |
-
text=[text_inputs[0] + [" "] + text_inputs[0]],
|
| 335 |
-
duration=ref_audio_len * 2,
|
| 336 |
-
steps=nfe_step,
|
| 337 |
-
cfg_strength=cfg_strength,
|
| 338 |
-
sway_sampling_coef=sway_sampling_coef,
|
| 339 |
-
)
|
| 340 |
-
generated = generated.to(torch.float32)
|
| 341 |
-
gen_audio = vocoder.decode(
|
| 342 |
-
generated[:, ref_audio_len:, :].permute(0, 2, 1).to(self.accelerator.device)
|
| 343 |
-
)
|
| 344 |
-
torchaudio.save(
|
| 345 |
-
f"{log_samples_path}/step_{global_step}_gen.wav", gen_audio.cpu(), target_sample_rate
|
| 346 |
-
)
|
| 347 |
-
|
| 348 |
-
if global_step % self.last_per_steps == 0:
|
| 349 |
-
self.save_checkpoint(global_step, last=True)
|
| 350 |
-
|
| 351 |
-
self.save_checkpoint(global_step, last=True)
|
| 352 |
-
|
| 353 |
-
self.accelerator.end_training()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|