Spaces:
Running
on
Zero
Running
on
Zero
| import numbers | |
| from typing import Dict, Optional, Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange | |
| from diffusers.utils import is_torch_version | |
| if is_torch_version(">=", "2.1.0"): | |
| LayerNorm = nn.LayerNorm | |
| else: | |
| # Has optional bias parameter compared to torch layer norm | |
| # TODO: replace with torch layernorm once min required torch version >= 2.1 | |
| class LayerNorm(nn.Module): | |
| def __init__(self, dim, eps: float = 1e-5, elementwise_affine: bool = True, bias: bool = True): | |
| super().__init__() | |
| self.eps = eps | |
| if isinstance(dim, numbers.Integral): | |
| dim = (dim,) | |
| self.dim = torch.Size(dim) | |
| if elementwise_affine: | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| self.bias = nn.Parameter(torch.zeros(dim)) if bias else None | |
| else: | |
| self.weight = None | |
| self.bias = None | |
| def forward(self, input): | |
| return F.layer_norm(input, self.dim, self.weight, self.bias, self.eps) | |
| class RMSNorm(nn.Module): | |
| def __init__(self, dim, eps: float, elementwise_affine: bool = True): | |
| super().__init__() | |
| self.eps = eps | |
| if isinstance(dim, numbers.Integral): | |
| dim = (dim,) | |
| self.dim = torch.Size(dim) | |
| if elementwise_affine: | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| else: | |
| self.weight = None | |
| def forward(self, hidden_states): | |
| input_dtype = hidden_states.dtype | |
| variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + self.eps) | |
| if self.weight is not None: | |
| # convert into half-precision if necessary | |
| if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
| hidden_states = hidden_states.to(self.weight.dtype) | |
| hidden_states = hidden_states * self.weight | |
| hidden_states = hidden_states.to(input_dtype) | |
| return hidden_states | |
| class AdaLayerNormContinuous(nn.Module): | |
| def __init__( | |
| self, | |
| embedding_dim: int, | |
| conditioning_embedding_dim: int, | |
| # NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters | |
| # because the output is immediately scaled and shifted by the projected conditioning embeddings. | |
| # Note that AdaLayerNorm does not let the norm layer have scale and shift parameters. | |
| # However, this is how it was implemented in the original code, and it's rather likely you should | |
| # set `elementwise_affine` to False. | |
| elementwise_affine=True, | |
| eps=1e-5, | |
| bias=True, | |
| norm_type="layer_norm", | |
| ): | |
| super().__init__() | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias) | |
| if norm_type == "layer_norm": | |
| self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias) | |
| elif norm_type == "rms_norm": | |
| self.norm = RMSNorm(embedding_dim, eps, elementwise_affine) | |
| else: | |
| raise ValueError(f"unknown norm_type {norm_type}") | |
| def forward_with_pad(self, x: torch.Tensor, conditioning_embedding: torch.Tensor, hidden_length=None) -> torch.Tensor: | |
| assert hidden_length is not None | |
| emb = self.linear(self.silu(conditioning_embedding).to(x.dtype)) | |
| batch_emb = torch.zeros_like(x).repeat(1, 1, 2) | |
| i_sum = 0 | |
| num_stages = len(hidden_length) | |
| for i_p, length in enumerate(hidden_length): | |
| batch_emb[:, i_sum:i_sum+length] = emb[i_p::num_stages][:,None] | |
| i_sum += length | |
| batch_scale, batch_shift = torch.chunk(batch_emb, 2, dim=2) | |
| x = self.norm(x) * (1 + batch_scale) + batch_shift | |
| return x | |
| def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor, hidden_length=None) -> torch.Tensor: | |
| # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT) | |
| if hidden_length is not None: | |
| return self.forward_with_pad(x, conditioning_embedding, hidden_length) | |
| emb = self.linear(self.silu(conditioning_embedding).to(x.dtype)) | |
| scale, shift = torch.chunk(emb, 2, dim=1) | |
| x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] | |
| return x | |
| class AdaLayerNormZero(nn.Module): | |
| r""" | |
| Norm layer adaptive layer norm zero (adaLN-Zero). | |
| Parameters: | |
| embedding_dim (`int`): The size of each embedding vector. | |
| num_embeddings (`int`): The size of the embeddings dictionary. | |
| """ | |
| def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None): | |
| super().__init__() | |
| self.emb = None | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) | |
| self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) | |
| def forward_with_pad( | |
| self, | |
| x: torch.Tensor, | |
| timestep: Optional[torch.Tensor] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| hidden_dtype: Optional[torch.dtype] = None, | |
| emb: Optional[torch.Tensor] = None, | |
| hidden_length: Optional[torch.Tensor] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| # x: [bs, seq_len, dim] | |
| if self.emb is not None: | |
| emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype) | |
| emb = self.linear(self.silu(emb)) | |
| batch_emb = torch.zeros_like(x).repeat(1, 1, 6) | |
| i_sum = 0 | |
| num_stages = len(hidden_length) | |
| for i_p, length in enumerate(hidden_length): | |
| batch_emb[:, i_sum:i_sum+length] = emb[i_p::num_stages][:,None] | |
| i_sum += length | |
| batch_shift_msa, batch_scale_msa, batch_gate_msa, batch_shift_mlp, batch_scale_mlp, batch_gate_mlp = batch_emb.chunk(6, dim=2) | |
| x = self.norm(x) * (1 + batch_scale_msa) + batch_shift_msa | |
| return x, batch_gate_msa, batch_shift_mlp, batch_scale_mlp, batch_gate_mlp | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| timestep: Optional[torch.Tensor] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| hidden_dtype: Optional[torch.dtype] = None, | |
| emb: Optional[torch.Tensor] = None, | |
| hidden_length: Optional[torch.Tensor] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| if hidden_length is not None: | |
| return self.forward_with_pad(x, timestep, class_labels, hidden_dtype, emb, hidden_length) | |
| if self.emb is not None: | |
| emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype) | |
| emb = self.linear(self.silu(emb)) | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) | |
| x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
| return x, gate_msa, shift_mlp, scale_mlp, gate_mlp |