import os import time import logging import re import gradio as gr from spaces import zero # 关键:引入 zero 装饰器 import spaces # 不要在这里 import torch 或加载模型 # from transformers import TextIteratorStreamer, AutoTokenizer # 不再需要 # 尝试导入 qwen_vl_utils,若失败则提供降级实现(返回空的图像/视频输入) try: from qwen_vl_utils import process_vision_info except Exception: def process_vision_info(messages): return None, None def replace_single_quotes(text): pattern = r"\B'([^']*)'\B" replaced_text = re.sub(pattern, r'"\1"', text) replaced_text = replaced_text.replace("’", "”").replace("‘", "“") return replaced_text DEFAULT_MODEL_PATH = os.environ.get("MODEL_OUTPUT_PATH", "PromptEnhancer/PromptEnhancer-32B") def _str_to_dtype(dtype_str): # 在子进程中再真正用 torch;这里仅返回字符串用于传参 if dtype_str in ("bfloat16", "float16", "float32"): return dtype_str return "float32" @spaces.GPU # 在子进程(拥有 GPU)中执行:包含模型加载与推理 def gpu_predict(model_path, device_map, torch_dtype, prompt_cot, sys_prompt, temperature, max_new_tokens, device): # 注意:所有 CUDA 相关 import 放在子进程函数内部 import torch from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor # logger(可选) if not logging.getLogger(__name__).handlers: logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # dtype if torch_dtype == "bfloat16": dtype = torch.bfloat16 elif torch_dtype == "float16": dtype = torch.float16 else: dtype = torch.float32 # 设备映射:根据 UI 的 device / device_map 决定 # ZeroGPU 建议 GPU 推理时用 "cuda" target_device = "cuda" if device == "cuda" else "cpu" load_device_map = "cuda" if device_map == "cuda" else "cpu" # 加载模型与处理器(在子进程) model = Qwen2_5_VLForConditionalGeneration.from_pretrained( model_path, torch_dtype=dtype, device_map=load_device_map, attn_implementation="sdpa", # 禁用 flash-attn,兼容性更好 ) processor = AutoProcessor.from_pretrained(model_path) # 组装消息 org_prompt_cot = prompt_cot try: user_prompt_format = sys_prompt + "\n" + org_prompt_cot messages = [ { "role": "user", "content": [ {"type": "text", "text": user_prompt_format}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) # 把输入移动到目标设备 inputs = inputs.to(target_device) # 生成 generated_ids = model.generate( **inputs, max_new_tokens=int(max_new_tokens), temperature=float(temperature), do_sample=False, top_k=5, top_p=0.9, ) # 仅解码新增 token generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False, ) output_res = output_text[0] # 兼容原逻辑:提取 think> 之后的内容 try: assert output_res.count("think>") == 2 new_prompt = output_res.split("think>")[-1] if new_prompt.startswith("\n"): new_prompt = new_prompt[1:] new_prompt = replace_single_quotes(new_prompt) except Exception: # 如果格式不符合预期,则直接回退为原始输入 new_prompt = org_prompt_cot return new_prompt, "" except Exception as e: # 失败则返回原始提示词和错误信息 return org_prompt_cot, f"推理失败:{e}" # ------------------------- # Gradio app # ------------------------- def run_single(prompt, sys_prompt, temperature, max_new_tokens, device, model_path, device_map, torch_dtype, state): if not prompt or not str(prompt).strip(): return "", "请先输入提示词。", state t0 = time.time() try: new_prompt, err = gpu_predict( model_path=model_path, device_map=device_map, torch_dtype=_str_to_dtype(torch_dtype), prompt_cot=prompt, sys_prompt=sys_prompt, temperature=temperature, max_new_tokens=max_new_tokens, device=device, ) dt = time.time() - t0 if err: return new_prompt, f"{err}(耗时 {dt:.2f}s)", state return new_prompt, f"耗时:{dt:.2f}s", state except Exception as e: return "", f"调用失败:{e}", state # 示例数据 test_list_zh = [ "第三人称视角,赛车在城市赛道上飞驰,左上角是小地图,地图下面是当前名次,右下角仪表盘显示当前速度。", "韩系插画风女生头像,粉紫色短发+透明感腮红,侧光渲染。", "点彩派,盛夏海滨,两位渔夫正在搬运木箱,三艘帆船停在岸边,对角线构图。", "一幅由梵高绘制的梦境麦田,旋转的蓝色星云与燃烧的向日葵相纠缠。", ] test_list_en = [ "Create a painting depicting a 30-year-old white female white-collar worker on a business trip by plane.", "Depicted in the anime style of Studio Ghibli, a girl stands quietly at the deck with a gentle smile.", "Blue background, a lone girl gazes into the distant sea; her expression is sorrowful.", "A blend of expressionist and vintage styles, drawing a building with colorful walls.", "Paint a winter scene with crystalline ice hangings from an Antarctic research station.", ] with gr.Blocks(title="Prompt Enhancer_V2") as demo: gr.Markdown("## 提示词重写器") with gr.Row(): with gr.Column(scale=2): model_path = gr.Textbox( label="模型路径(本地或HF地址)", value=DEFAULT_MODEL_PATH, placeholder="例如:Qwen/Qwen2.5-VL-7B-Instruct", ) device_map = gr.Dropdown( choices=["cuda", "cpu"], value="cuda", label="device_map(模型加载映射)" ) torch_dtype = gr.Dropdown( choices=["bfloat16", "float16", "float32"], value="bfloat16", label="torch_dtype" ) with gr.Column(scale=3): sys_prompt = gr.Textbox( label="系统提示词(默认无需修改)", value="请根据用户的输入,生成思考过程的思维链并改写提示词:", lines=3 ) with gr.Row(): temperature = gr.Slider(0, 1, value=0.1, step=0.05, label="Temperature") max_new_tokens = gr.Slider(16, 4096, value=2048, step=16, label="Max New Tokens") device = gr.Dropdown(choices=["cuda", "cpu"], value="cuda", label="推理device") state = gr.State(value=None) with gr.Tab("推理"): with gr.Row(): with gr.Column(scale=2): prompt = gr.Textbox(label="输入提示词", lines=6, placeholder="在此粘贴要改写的提示词...") run_btn = gr.Button("生成重写", variant="primary") gr.Examples( examples=test_list_zh + test_list_en, inputs=prompt, label="示例" ) with gr.Column(scale=3): out_text = gr.Textbox(label="重写结果", lines=10) out_info = gr.Markdown("准备就绪。") run_btn.click( run_single, inputs=[prompt, sys_prompt, temperature, max_new_tokens, device, model_path, device_map, torch_dtype, state], outputs=[out_text, out_info, state] ) gr.Markdown("提示:如有任何问题可 email 联系:linqing1995@buaa.edu.cn") # 为避免多并发导致显存爆,可限制并发(ZeroGPU 本身是无状态,仍建议限制) # demo.queue(concurrency_count=1, max_size=10) if __name__ == "__main__": demo.launch(ssr_mode=False, show_error=True, share=True)