Spaces:
Runtime error
Runtime error
| import argparse | |
| import math | |
| import os | |
| import torch | |
| from torch import optim | |
| from torch.nn import functional as F | |
| from torchvision import transforms | |
| from PIL import Image | |
| from tqdm import tqdm | |
| import lpips | |
| from model import Generator | |
| def noise_regularize(noises): | |
| loss = 0 | |
| for noise in noises: | |
| size = noise.shape[2] | |
| while True: | |
| loss = ( | |
| loss | |
| + (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2) | |
| + (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2) | |
| ) | |
| if size <= 8: | |
| break | |
| noise = noise.reshape([1, 1, size // 2, 2, size // 2, 2]) | |
| noise = noise.mean([3, 5]) | |
| size //= 2 | |
| return loss | |
| def noise_normalize_(noises): | |
| for noise in noises: | |
| mean = noise.mean() | |
| std = noise.std() | |
| noise.data.add_(-mean).div_(std) | |
| def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05): | |
| lr_ramp = min(1, (1 - t) / rampdown) | |
| lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi) | |
| lr_ramp = lr_ramp * min(1, t / rampup) | |
| return initial_lr * lr_ramp | |
| def latent_noise(latent, strength): | |
| noise = torch.randn_like(latent) * strength | |
| return latent + noise | |
| def make_image(tensor): | |
| return ( | |
| tensor.detach() | |
| .clamp_(min=-1, max=1) | |
| .add(1) | |
| .div_(2) | |
| .mul(255) | |
| .type(torch.uint8) | |
| .permute(0, 2, 3, 1) | |
| .to('cpu') | |
| .numpy() | |
| ) | |
| if __name__ == '__main__': | |
| device = 'cuda' | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--ckpt', type=str, required=True) | |
| parser.add_argument('--size', type=int, default=256) | |
| parser.add_argument('--lr_rampup', type=float, default=0.05) | |
| parser.add_argument('--lr_rampdown', type=float, default=0.25) | |
| parser.add_argument('--lr', type=float, default=0.1) | |
| parser.add_argument('--noise', type=float, default=0.05) | |
| parser.add_argument('--noise_ramp', type=float, default=0.75) | |
| parser.add_argument('--step', type=int, default=1000) | |
| parser.add_argument('--noise_regularize', type=float, default=1e5) | |
| parser.add_argument('--mse', type=float, default=0) | |
| parser.add_argument('--w_plus', action='store_true') | |
| parser.add_argument('files', metavar='FILES', nargs='+') | |
| args = parser.parse_args() | |
| n_mean_latent = 10000 | |
| resize = min(args.size, 256) | |
| transform = transforms.Compose( | |
| [ | |
| transforms.Resize(resize), | |
| transforms.CenterCrop(resize), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
| ] | |
| ) | |
| imgs = [] | |
| for imgfile in args.files: | |
| img = transform(Image.open(imgfile).convert('RGB')) | |
| imgs.append(img) | |
| imgs = torch.stack(imgs, 0).to(device) | |
| g_ema = Generator(args.size, 512, 8) | |
| g_ema.load_state_dict(torch.load(args.ckpt)['g_ema'], strict=False) | |
| g_ema.eval() | |
| g_ema = g_ema.to(device) | |
| with torch.no_grad(): | |
| noise_sample = torch.randn(n_mean_latent, 512, device=device) | |
| latent_out = g_ema.style(noise_sample) | |
| latent_mean = latent_out.mean(0) | |
| latent_std = ((latent_out - latent_mean).pow(2).sum() / n_mean_latent) ** 0.5 | |
| percept = lpips.PerceptualLoss( | |
| model='net-lin', net='vgg', use_gpu=device.startswith('cuda') | |
| ) | |
| noises = g_ema.make_noise() | |
| latent_in = latent_mean.detach().clone().unsqueeze(0).repeat(2, 1) | |
| if args.w_plus: | |
| latent_in = latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1) | |
| latent_in.requires_grad = True | |
| for noise in noises: | |
| noise.requires_grad = True | |
| optimizer = optim.Adam([latent_in] + noises, lr=args.lr) | |
| pbar = tqdm(range(args.step)) | |
| latent_path = [] | |
| for i in pbar: | |
| t = i / args.step | |
| lr = get_lr(t, args.lr) | |
| optimizer.param_groups[0]['lr'] = lr | |
| noise_strength = latent_std * args.noise * max(0, 1 - t / args.noise_ramp) ** 2 | |
| latent_n = latent_noise(latent_in, noise_strength.item()) | |
| img_gen, _ = g_ema([latent_n], input_is_latent=True, noise=noises) | |
| batch, channel, height, width = img_gen.shape | |
| if height > 256: | |
| factor = height // 256 | |
| img_gen = img_gen.reshape( | |
| batch, channel, height // factor, factor, width // factor, factor | |
| ) | |
| img_gen = img_gen.mean([3, 5]) | |
| p_loss = percept(img_gen, imgs).sum() | |
| n_loss = noise_regularize(noises) | |
| mse_loss = F.mse_loss(img_gen, imgs) | |
| loss = p_loss + args.noise_regularize * n_loss + args.mse * mse_loss | |
| optimizer.zero_grad() | |
| loss.backward() | |
| optimizer.step() | |
| noise_normalize_(noises) | |
| if (i + 1) % 100 == 0: | |
| latent_path.append(latent_in.detach().clone()) | |
| pbar.set_description( | |
| ( | |
| f'perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};' | |
| f' mse: {mse_loss.item():.4f}; lr: {lr:.4f}' | |
| ) | |
| ) | |
| result_file = {'noises': noises} | |
| img_gen, _ = g_ema([latent_path[-1]], input_is_latent=True, noise=noises) | |
| filename = os.path.splitext(os.path.basename(args.files[0]))[0] + '.pt' | |
| img_ar = make_image(img_gen) | |
| for i, input_name in enumerate(args.files): | |
| result_file[input_name] = {'img': img_gen[i], 'latent': latent_in[i]} | |
| img_name = os.path.splitext(os.path.basename(input_name))[0] + '-project.png' | |
| pil_img = Image.fromarray(img_ar[i]) | |
| pil_img.save(img_name) | |
| torch.save(result_file, filename) | |