Spaces:
Runtime error
Runtime error
| import time | |
| from collections import deque | |
| from contextlib import nullcontext | |
| from typing import Any, Callable, Deque, Dict, Optional | |
| import torch | |
| from lightning import Callback, Fabric, LightningModule, Trainer | |
| from lightning.fabric.accelerators.xla import _XLA_GREATER_EQUAL_2_1 | |
| from lightning.fabric.plugins import ( | |
| BitsandbytesPrecision, | |
| DoublePrecision, | |
| FSDPPrecision, | |
| HalfPrecision, | |
| MixedPrecision, | |
| Precision, | |
| TransformerEnginePrecision, | |
| XLAPrecision, | |
| ) | |
| from lightning.fabric.utilities.rank_zero import rank_zero_only as fabric_rank_zero_only | |
| from lightning.pytorch.plugins import ( | |
| DoublePrecisionPlugin, | |
| FSDPPrecisionPlugin, | |
| HalfPrecisionPlugin, | |
| MixedPrecisionPlugin, | |
| XLAPrecisionPlugin, | |
| ) | |
| from lightning.pytorch.utilities.rank_zero import rank_zero_only as trainer_rank_zero_only | |
| from torch.utils.flop_counter import FlopCounterMode | |
| from tsai_gpt import GPT | |
| from tsai_gpt.utils import num_parameters | |
| GPU_AVAILABLE_FLOPS = { | |
| # source: https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet | |
| # nvidia publishes spec sheet with a 2x sparsity factor | |
| "h100-sxm": { | |
| torch.float64: 67e12, | |
| torch.float32: 67e12, | |
| torch.bfloat16: 1.979e15 / 2, | |
| torch.float16: 1.979e15 / 2, | |
| torch.int8: 3.958e15 / 2, | |
| }, | |
| "h100-pcie": { | |
| torch.float64: 51e12, | |
| torch.float32: 51e12, | |
| torch.bfloat16: 1.513e15 / 2, | |
| torch.float16: 1.513e15 / 2, | |
| torch.int8: 3.026e15 / 2, | |
| }, | |
| # source: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf | |
| # sxm and pcie have same flop counts | |
| "a100": {torch.float64: 19.5e12, torch.float32: 19.5e12, torch.bfloat16: 312e12, torch.float16: 312e12}, | |
| # source: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/a10-datasheet.pdf | |
| "a10g": {torch.float32: 31.2e12, torch.bfloat16: 125e12, torch.float16: 125e12}, | |
| # source: https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf | |
| "v100-sxm": {torch.float64: 7.8e12, torch.float32: 15.7e12, torch.float16: 125e12}, | |
| "v100-pcie": {torch.float64: 7e12, torch.float32: 14e12, torch.float16: 112e12}, | |
| "v100s-pcie": {torch.float64: 8.2e12, torch.float32: 16.4e12, torch.float16: 130e12}, | |
| # source: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf | |
| # sxm and pcie have same flop counts | |
| "t4": {torch.float32: 8.1e12, torch.float16: 65e12, torch.int8: 130e12}, | |
| # https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf | |
| "quadro rtx 5000": {torch.float32: 11.2e12, torch.float16: 89.2e12}, | |
| } | |
| TPU_AVAILABLE_FLOPS = { | |
| # flop count for each TPU generation is the same for all precisions | |
| # since bfloat16 precision is always used for performing matrix operations | |
| # for more info: https://cloud.google.com/tpu/docs/bfloat16#choosing_bfloat16 | |
| # source: https://arxiv.org/pdf/1907.10701.pdf | |
| "v2": 45e12, | |
| # source: https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v3 | |
| "v3": 123e12, | |
| # source: https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v4 | |
| "v4": 275e12, | |
| # source: https://cloud.google.com/tpu/docs/v5e-training | |
| "v5litepod": 197e12, | |
| } | |
| def get_flops_available(device: torch.device, dtype: torch.dtype) -> Optional[float]: | |
| if device.type == "cuda": | |
| device_name = torch.cuda.get_device_name(device).lower() | |
| if "h100" in device_name and "hbm3" in device_name: | |
| device_name = "h100-sxm" | |
| elif "h100" in device_name and ("pcie" in device_name or "hbm2e" in device_name): | |
| device_name = "h100-pcie" | |
| elif "a100" in device_name: | |
| device_name = "a100" | |
| elif "a10g" in device_name: | |
| device_name = "a10g" | |
| elif "v100-sxm" in device_name: | |
| device_name = "v100-sxm" | |
| elif "v100-pcie" in device_name: | |
| device_name = "v100-pcie" | |
| elif "t4" in device_name: | |
| device_name = "t4" | |
| elif "quadro rtx 5000" in device_name: | |
| device_name = "quadro rtx 5000" | |
| else: | |
| device_name = None | |
| if device_name is not None: | |
| try: | |
| return int(GPU_AVAILABLE_FLOPS[device_name][dtype]) | |
| except KeyError: | |
| raise KeyError( | |
| f"flop count not found for {device_name} with dtype: {dtype}; " | |
| "MFU cannot be calculated and reported." | |
| ) | |
| elif device.type == "xla": | |
| if _XLA_GREATER_EQUAL_2_1: | |
| from torch_xla._internal import tpu | |
| else: | |
| from torch_xla.experimental import tpu | |
| device_name = tpu.get_tpu_env()["TYPE"].lower() | |
| try: | |
| return int(TPU_AVAILABLE_FLOPS[device_name]) | |
| except KeyError: | |
| raise KeyError( | |
| f"flop count not found for {device_name} with dtype: {dtype}; MFU cannot be calculated and reported." | |
| ) | |
| return None | |
| # Adapted from https://github.com/mosaicml/composer/blob/f2a2dc820cb75023b9eb7c46fdfd25273712abd0/composer/callbacks/speed_monitor.py | |
| class SpeedMonitorBase: | |
| """Logs the training throughput and utilization. | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| | Key | Logged data | | |
| +=====================================+===========================================================+ | |
| | | Rolling average (over `window_size` most recent | | |
| | `throughput/batches_per_sec` | batches) of the number of batches processed per second | | |
| | | | | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| | | Rolling average (over `window_size` most recent | | |
| | `throughput/samples_per_sec` | batches) of the number of samples processed per second | | |
| | | | | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| | | Rolling average (over `window_size` most recent | | |
| | `throughput/tokens_per_sec` | batches) of the number of tokens processed per second. | | |
| | | This may include padding depending on dataset | | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| | | Estimates flops by `flops_per_batch * batches_per_sec` | | |
| | `throughput/flops_per_sec` | | | |
| | | | | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| | `throughput/device/batches_per_sec` | `throughput/batches_per_sec` divided by world size | | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| | `throughput/device/samples_per_sec` | `throughput/samples_per_sec` divided by world size | | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| | | `throughput/tokens_per_sec` divided by world size. This | | |
| | `throughput/device/tokens_per_sec` | may include pad tokens depending on dataset | | |
| | | | | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| | | `throughput/flops_per_sec` divided by world size. Only | | |
| | `throughput/device/flops_per_sec` | logged when model has attribute `flops_per_batch` | | |
| | | | | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| | | `throughput/device/flops_per_sec` divided by world size. | | |
| | `throughput/device/mfu` | | | |
| | | | | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| | `time/train` | Total elapsed training time | | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| | `time/val` | Total elapsed validation time | | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| | `time/total` | Total elapsed time (time/train + time/val) | | |
| +-------------------------------------+-----------------------------------------------------------+ | |
| Notes: | |
| - The implementation assumes that devices are homogeneous as it normalizes by the world size. | |
| - Tokens/sec, flops/sec and MFU do not account for padding tokens if present. We suggest using samples/sec or | |
| batches/sec to measure throughput under this circumstance. | |
| - Be careful when comparing MFU numbers across projects, as this will highly depend on the ``flops_per_batch``. | |
| There is no widespread, realistic, and reliable implementation to compute them. | |
| We suggest using our ``measure_flops`` function, but many other works will use ``estimated_flops`` which | |
| will almost always be an overestimate when compared to the true value. | |
| Args: | |
| window_size (int, optional): Number of batches to use for a rolling average of throughput. | |
| Defaults to 100. | |
| time_unit (str, optional): Time unit to use for `time` logging. Can be one of | |
| 'seconds', 'minutes', 'hours', or 'days'. Defaults to 'hours'. | |
| """ | |
| def __init__( | |
| self, | |
| flops_available: float, | |
| log_dict: Callable[[Dict, int], None], | |
| window_size: int = 100, | |
| time_unit: str = "hours", | |
| ): | |
| self.flops_available = flops_available | |
| self.log_dict = log_dict | |
| # Track the batch num samples and wct to compute throughput over a window of batches | |
| self.history_samples: Deque[int] = deque(maxlen=window_size + 1) | |
| self.history_wct: Deque[float] = deque(maxlen=window_size + 1) | |
| self.history_lengths: Deque[int] = deque(maxlen=window_size + 1) | |
| self.history_flops: Deque[int] = deque(maxlen=window_size + 1) | |
| self.divider = 1 | |
| if time_unit == "seconds": | |
| self.divider = 1 | |
| elif time_unit == "minutes": | |
| self.divider = 60 | |
| elif time_unit == "hours": | |
| self.divider = 60 * 60 | |
| elif time_unit == "days": | |
| self.divider = 60 * 60 * 24 | |
| else: | |
| raise ValueError( | |
| f'Invalid time_unit: {time_unit}. Must be one of "seconds", "minutes", "hours", or "days".' | |
| ) | |
| # Keep track of time spent evaluating | |
| self.total_eval_wct = 0.0 | |
| self.step = -1 | |
| def on_train_batch_end( | |
| self, | |
| samples: int, # total samples seen (per device) | |
| train_elapsed: float, # total training time (seconds) | |
| world_size: int, | |
| flops_per_batch: Optional[int] = None, # (per device) | |
| lengths: Optional[int] = None, # total length of the samples seen (per device) | |
| ) -> None: | |
| self.step += 1 | |
| step = self.step | |
| metrics = {} | |
| self.history_samples.append(samples) | |
| if lengths is not None: | |
| self.history_lengths.append(lengths) | |
| # if lengths are passed, there should be as many values as samples | |
| assert len(self.history_samples) == len(self.history_lengths) | |
| self.history_wct.append(train_elapsed) | |
| if len(self.history_wct) == self.history_wct.maxlen: | |
| elapsed_batches = len(self.history_samples) - 1 | |
| elapsed_samples = self.history_samples[-1] - self.history_samples[0] | |
| elapsed_wct = self.history_wct[-1] - self.history_wct[0] | |
| samples_per_sec = elapsed_samples * world_size / elapsed_wct | |
| dev_samples_per_sec = elapsed_samples / elapsed_wct | |
| metrics.update( | |
| { | |
| "throughput/batches_per_sec": elapsed_batches * world_size / elapsed_wct, | |
| "throughput/samples_per_sec": samples_per_sec, | |
| "throughput/device/batches_per_sec": elapsed_batches / elapsed_wct, | |
| "throughput/device/samples_per_sec": dev_samples_per_sec, | |
| } | |
| ) | |
| if lengths is not None: | |
| elapsed_lengths = int(self.history_lengths[-1]) - int(self.history_lengths[0]) | |
| avg_length = elapsed_lengths / elapsed_batches | |
| metrics.update( | |
| { | |
| "throughput/tokens_per_sec": samples_per_sec * avg_length, | |
| "throughput/device/tokens_per_sec": dev_samples_per_sec * avg_length, | |
| } | |
| ) | |
| if flops_per_batch is not None: | |
| # sum of flops per batch across ranks | |
| self.history_flops.append(flops_per_batch * world_size) | |
| if len(self.history_flops) == self.history_flops.maxlen: | |
| elapsed_flops = sum(self.history_flops) - self.history_flops[0] | |
| elapsed_wct = self.history_wct[-1] - self.history_wct[0] | |
| flops_per_sec = elapsed_flops / elapsed_wct | |
| device_flops_per_sec = flops_per_sec / world_size | |
| metrics.update( | |
| {"throughput/flops_per_sec": flops_per_sec, "throughput/device/flops_per_sec": device_flops_per_sec} | |
| ) | |
| if self.flops_available: | |
| metrics["throughput/device/mfu"] = device_flops_per_sec / self.flops_available | |
| metrics.update( | |
| { | |
| "time/train": train_elapsed / self.divider, | |
| "time/val": self.total_eval_wct / self.divider, | |
| "time/total": (train_elapsed + self.total_eval_wct) / self.divider, | |
| "samples": samples, | |
| } | |
| ) | |
| self.log_dict(metrics, step) | |
| def eval_end(self, eval_elapsed: float) -> None: | |
| self.total_eval_wct += eval_elapsed # seconds | |
| def plugin_to_compute_dtype(plugin: Precision) -> torch.dtype: | |
| if isinstance(plugin, BitsandbytesPrecision): | |
| return plugin.dtype | |
| if isinstance(plugin, (HalfPrecision, MixedPrecision, HalfPrecisionPlugin)): | |
| return plugin._desired_input_dtype | |
| if isinstance(plugin, MixedPrecisionPlugin): | |
| return torch.bfloat16 if plugin.precision == "bf16-mixed" else torch.half | |
| if isinstance(plugin, (DoublePrecision, DoublePrecisionPlugin)): | |
| return torch.double | |
| if isinstance(plugin, (XLAPrecision, XLAPrecisionPlugin)): | |
| return plugin._desired_dtype | |
| if isinstance(plugin, TransformerEnginePrecision): | |
| return torch.int8 | |
| if isinstance(plugin, (FSDPPrecision, FSDPPrecisionPlugin)): | |
| return plugin.mixed_precision_config.reduce_dtype | |
| if isinstance(plugin, Precision): | |
| return torch.float32 | |
| raise NotImplementedError(plugin) | |
| class SpeedMonitorFabric(SpeedMonitorBase): | |
| def __init__(self, fabric: Fabric, *args: Any, **kwargs: Any) -> None: | |
| dtype = plugin_to_compute_dtype(fabric.strategy.precision) | |
| flops_available = get_flops_available(fabric.device, dtype) | |
| super().__init__(flops_available, fabric.log_dict, *args, **kwargs) | |
| def on_train_batch_end(self, *args: Any, **kwargs: Any) -> None: | |
| super().on_train_batch_end(*args, **kwargs) | |
| class SpeedMonitorCallback(Callback): | |
| def __init__(self, length_fn: Callable[[Any], int], batch_size: int, **kwargs: Any) -> None: | |
| super().__init__() | |
| self.speed_monitor: Optional[SpeedMonitorBase] = None | |
| self.speed_monitor_kwargs = kwargs | |
| self.length_fn = length_fn | |
| self.batch_size = batch_size | |
| self.eval_t0: int = 0 | |
| self.train_t0: int = 0 | |
| self.total_lengths: int = 0 | |
| def setup(self, trainer: Trainer, pl_module: LightningModule, stage: str) -> None: | |
| if self.speed_monitor is not None: | |
| return # already setup | |
| dtype = plugin_to_compute_dtype(trainer.precision_plugin) | |
| flops_available = get_flops_available(trainer.strategy.root_device, dtype) | |
| self.speed_monitor = SpeedMonitorBase(flops_available, trainer.logger.log_metrics, **self.speed_monitor_kwargs) | |
| def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None: | |
| if trainer.fit_loop._should_accumulate(): | |
| return | |
| self.train_t0 = time.perf_counter() | |
| def on_train_batch_end( | |
| self, trainer: Trainer, pl_module: LightningModule, outputs: Any, batch: Any, batch_idx: int | |
| ) -> None: | |
| self.total_lengths += self.length_fn(batch) | |
| if trainer.fit_loop._should_accumulate(): | |
| return | |
| train_elapsed = time.perf_counter() - self.train_t0 | |
| assert self.speed_monitor is not None | |
| iter_num = trainer.fit_loop.total_batch_idx | |
| assert (measured_flops := pl_module.measured_flops) is not None | |
| self.speed_monitor.on_train_batch_end( | |
| (iter_num + 1) * self.batch_size, | |
| train_elapsed, | |
| # this assumes that device FLOPs are the same and that all devices have the same batch size | |
| trainer.world_size, | |
| flops_per_batch=measured_flops, | |
| lengths=self.total_lengths, | |
| ) | |
| def on_validation_start(self, trainer: Trainer, pl_module: LightningModule) -> None: | |
| self.eval_t0 = time.perf_counter() | |
| def on_validation_end(self, trainer: Trainer, pl_module: LightningModule) -> None: | |
| eval_elapsed = time.perf_counter() - self.eval_t0 | |
| assert self.speed_monitor is not None | |
| self.speed_monitor.eval_end(eval_elapsed) | |
| def flops_per_param(max_seq_length: int, n_layer: int, n_embd: int, n_params: int) -> int: | |
| flops_per_token = 2 * n_params # each parameter is used for a MAC (2 FLOPS) per network operation | |
| # this assumes that all samples have a fixed length equal to the block size | |
| # which is most likely false during finetuning | |
| flops_per_seq = flops_per_token * max_seq_length | |
| attn_flops_per_seq = n_layer * 2 * 2 * (n_embd * (max_seq_length**2)) | |
| return flops_per_seq + attn_flops_per_seq | |
| def estimate_flops(model: GPT) -> int: | |
| """Measures estimated FLOPs for MFU. | |
| Refs: | |
| * https://ar5iv.labs.arxiv.org/html/2205.05198#A1 | |
| * https://ar5iv.labs.arxiv.org/html/2204.02311#A2 | |
| """ | |
| # using all parameters for this is a naive over estimation because not all model parameters actually contribute to | |
| # this FLOP computation (e.g. embedding, norm). For this reason, the result will be higher by a fixed percentage | |
| # (~10%) compared to the measured FLOPs, making those lower but more realistic. | |
| # For a proper estimate, this needs a more fine-grained calculation as in Appendix A of the paper. | |
| n_trainable_params = num_parameters(model, requires_grad=True) | |
| trainable_flops = flops_per_param( | |
| model.max_seq_length, model.config.n_layer, model.config.n_embd, n_trainable_params | |
| ) | |
| # forward + backward + gradients (assumes no gradient accumulation) | |
| ops_per_step = 3 if model.training else 1 | |
| n_frozen_params = num_parameters(model, requires_grad=False) | |
| frozen_flops = flops_per_param(model.max_seq_length, model.config.n_layer, model.config.n_embd, n_frozen_params) | |
| # forward + backward | |
| frozen_ops_per_step = 2 if model.training else 1 | |
| return ops_per_step * trainable_flops + frozen_ops_per_step * frozen_flops | |
| def measure_flops(model: GPT, x: torch.Tensor) -> int: | |
| """Measures real FLOPs for HFU""" | |
| flop_counter = FlopCounterMode(model, display=False) | |
| ctx = nullcontext() if model.training else torch.no_grad() | |
| with ctx, flop_counter: | |
| y = model(x) | |
| if model.training: | |
| y.sum().backward() | |
| return flop_counter.get_total_flops() | |