Create generator.py
Browse files- generator.py +54 -0
generator.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
LATENT_DIM = 500
|
| 2 |
+
EPSILON = 1e-8
|
| 3 |
+
|
| 4 |
+
class Generator(nn.Module):
|
| 5 |
+
@nn.compact
|
| 6 |
+
def __call__(self, latent, training=True):
|
| 7 |
+
x = nn.Dense(features=64)(latent)
|
| 8 |
+
# x = nn.BatchNorm(not training)(x)
|
| 9 |
+
x = nn.relu(x)
|
| 10 |
+
x = nn.Dense(features=2*2*1024)(x)
|
| 11 |
+
x = nn.BatchNorm(not training)(x)
|
| 12 |
+
x = nn.relu(x)
|
| 13 |
+
x = nn.Dropout(0.25, deterministic=not training)(x)
|
| 14 |
+
x = x.reshape((x.shape[0], 2, 2, -1))
|
| 15 |
+
x4 = nn.ConvTranspose(features=512, kernel_size=(3, 3), strides=(2, 2))(x)
|
| 16 |
+
x4 = LocalResponseNorm()(x4)
|
| 17 |
+
x4 = nn.relu(x4)
|
| 18 |
+
x4o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x4)
|
| 19 |
+
x4 = nn.ConvTranspose(features=512, kernel_size=(3, 3))(x4)
|
| 20 |
+
x4 = LocalResponseNorm()(x4)
|
| 21 |
+
x4 = nn.relu(x4)
|
| 22 |
+
x8 = nn.ConvTranspose(features=256, kernel_size=(3, 3), strides=(2, 2))(x4)
|
| 23 |
+
x8 = LocalResponseNorm()(x8)
|
| 24 |
+
x8 = nn.relu(x8)
|
| 25 |
+
x8o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x8)
|
| 26 |
+
x8 = nn.ConvTranspose(features=256, kernel_size=(3, 3))(x8)
|
| 27 |
+
x8 = LocalResponseNorm()(x8)
|
| 28 |
+
x8 = nn.relu(x8)
|
| 29 |
+
x16 = nn.ConvTranspose(features=128, kernel_size=(3, 3), strides=(2, 2))(x8)
|
| 30 |
+
x16 = LocalResponseNorm()(x16)
|
| 31 |
+
x16 = nn.relu(x16)
|
| 32 |
+
x16o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x16)
|
| 33 |
+
x16 = nn.ConvTranspose(features=128, kernel_size=(3, 3))(x16)
|
| 34 |
+
x16 = LocalResponseNorm()(x16)
|
| 35 |
+
x16 = nn.relu(x16)
|
| 36 |
+
x32 = nn.ConvTranspose(features=64, kernel_size=(3, 3), strides=(2, 2))(x16)
|
| 37 |
+
x32 = LocalResponseNorm()(x32)
|
| 38 |
+
x32 = nn.relu(x32)
|
| 39 |
+
x32o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x32)
|
| 40 |
+
x32 = nn.ConvTranspose(features=64, kernel_size=(3, 3))(x32)
|
| 41 |
+
x32 = LocalResponseNorm()(x32)
|
| 42 |
+
x32 = nn.relu(x32)
|
| 43 |
+
x64 = nn.ConvTranspose(features=32, kernel_size=(3, 3), strides=(2, 2))(x32)
|
| 44 |
+
x64 = LocalResponseNorm()(x64)
|
| 45 |
+
x64 = nn.relu(x64)
|
| 46 |
+
x64o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x64)
|
| 47 |
+
x64 = nn.ConvTranspose(features=32, kernel_size=(3, 3))(x64)
|
| 48 |
+
x64 = LocalResponseNorm()(x64)
|
| 49 |
+
x64 = nn.relu(x64)
|
| 50 |
+
x128 = nn.ConvTranspose(features=64, kernel_size=(3, 3), strides=(2, 2))(x64)
|
| 51 |
+
x128 = LocalResponseNorm()(x128)
|
| 52 |
+
x128 = nn.relu(x128)
|
| 53 |
+
x128o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x128)
|
| 54 |
+
return (nn.tanh(x128o), nn.tanh(x64o), nn.tanh(x32o), nn.tanh(x16o), nn.tanh(x8o), nn.tanh(x4o))
|