Update app.py
Browse files
app.py
CHANGED
|
@@ -8,46 +8,15 @@ from huggingface_hub import HfFileSystem
|
|
| 8 |
from flax.serialization import msgpack_restore, from_state_dict
|
| 9 |
import time
|
| 10 |
from local_response_norm import LocalResponseNorm
|
|
|
|
| 11 |
|
| 12 |
LATENT_DIM = 100
|
| 13 |
|
| 14 |
-
class Generator(nn.Module):
|
| 15 |
-
@nn.compact
|
| 16 |
-
def __call__(self, latent, training=True):
|
| 17 |
-
x = nn.Dense(features=32)(latent)
|
| 18 |
-
# x = nn.BatchNorm(not training)(x)
|
| 19 |
-
x = nn.relu(x)
|
| 20 |
-
x = nn.Dense(features=2*2*256)(x)
|
| 21 |
-
x = nn.BatchNorm(not training)(x)
|
| 22 |
-
x = nn.relu(x)
|
| 23 |
-
x = nn.Dropout(0.5, deterministic=not training)(x)
|
| 24 |
-
x = x.reshape((x.shape[0], 2, 2, -1))
|
| 25 |
-
x4o = nn.ConvTranspose(features=3, kernel_size=(2, 2), strides=(2, 2))(x)
|
| 26 |
-
x4 = nn.ConvTranspose(features=128, kernel_size=(2, 2), strides=(2, 2))(x)
|
| 27 |
-
x4 = LocalResponseNorm()(x4)
|
| 28 |
-
# x4 = nn.BatchNorm(not training)(x4)
|
| 29 |
-
x8 = nn.relu(x4)
|
| 30 |
-
# x8 = nn.Dropout(0.5, deterministic=not training)(x8)
|
| 31 |
-
x8o = nn.ConvTranspose(features=3, kernel_size=(2, 2), strides=(2, 2))(x8)
|
| 32 |
-
x8 = nn.ConvTranspose(features=64, kernel_size=(2, 2), strides=(2, 2))(x8)
|
| 33 |
-
x8 = LocalResponseNorm()(x8)
|
| 34 |
-
# x8 = nn.BatchNorm(not training)(x8)
|
| 35 |
-
x16 = nn.relu(x8)
|
| 36 |
-
# x16 = nn.Dropout(0.5, deterministic=not training)(x16)
|
| 37 |
-
x16o = nn.ConvTranspose(features=3, kernel_size=(2, 2), strides=(2, 2))(x16)
|
| 38 |
-
x16 = nn.ConvTranspose(features=32, kernel_size=(2, 2), strides=(2, 2))(x16)
|
| 39 |
-
x16 = LocalResponseNorm()(x16)
|
| 40 |
-
# x16 = nn.BatchNorm(not training)(x16)
|
| 41 |
-
x32 = nn.relu(x16)
|
| 42 |
-
# x32 = nn.Dropout(0.5, deterministic=not training)(x32)
|
| 43 |
-
x32o = nn.ConvTranspose(features=3, kernel_size=(2, 2), strides=(2, 2))(x32)
|
| 44 |
-
return (nn.tanh(x32o), nn.tanh(x16o), nn.tanh(x8o), nn.tanh(x4o))
|
| 45 |
-
|
| 46 |
generator = Generator()
|
| 47 |
variables = generator.init(jax.random.PRNGKey(0), jnp.zeros([1, LATENT_DIM]), training=False)
|
| 48 |
|
| 49 |
fs = HfFileSystem()
|
| 50 |
-
with fs.open("PrakhAI/
|
| 51 |
g_state = from_state_dict(variables, msgpack_restore(f.read()))
|
| 52 |
|
| 53 |
def sample_latent(key):
|
|
@@ -55,7 +24,7 @@ def sample_latent(key):
|
|
| 55 |
|
| 56 |
if st.button('Generate Plane'):
|
| 57 |
latents = sample_latent(jax.random.PRNGKey(int(1_000_000 * time.time())))
|
| 58 |
-
(
|
| 59 |
img = ((np.array(g_out32[0])+1)*255./2.).astype(np.uint8)
|
| 60 |
st.image(Image.fromarray(img))
|
| 61 |
-
st.write("The model and its details are at https://huggingface.co/PrakhAI/
|
|
|
|
| 8 |
from flax.serialization import msgpack_restore, from_state_dict
|
| 9 |
import time
|
| 10 |
from local_response_norm import LocalResponseNorm
|
| 11 |
+
from generator import Generator
|
| 12 |
|
| 13 |
LATENT_DIM = 100
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
generator = Generator()
|
| 16 |
variables = generator.init(jax.random.PRNGKey(0), jnp.zeros([1, LATENT_DIM]), training=False)
|
| 17 |
|
| 18 |
fs = HfFileSystem()
|
| 19 |
+
with fs.open("PrakhAI/AIPlane2/g_checkpoint.msgpack", "rb") as f:
|
| 20 |
g_state = from_state_dict(variables, msgpack_restore(f.read()))
|
| 21 |
|
| 22 |
def sample_latent(key):
|
|
|
|
| 24 |
|
| 25 |
if st.button('Generate Plane'):
|
| 26 |
latents = sample_latent(jax.random.PRNGKey(int(1_000_000 * time.time())))
|
| 27 |
+
(g_out128, _, _, _, _, _) = generator.apply({'params': g_state['params'], 'batch_stats': g_state['batch_stats']}, latents, training=False)
|
| 28 |
img = ((np.array(g_out32[0])+1)*255./2.).astype(np.uint8)
|
| 29 |
st.image(Image.fromarray(img))
|
| 30 |
+
st.write("The model and its details are at https://huggingface.co/PrakhAI/AIPlane2")
|