Spaces:
Runtime error
Runtime error
Add video demo
Browse files
app.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import warnings
|
| 4 |
|
|
@@ -9,7 +11,9 @@ os.system("python setup.py build develop --user")
|
|
| 9 |
from maskrcnn_benchmark.config import cfg
|
| 10 |
from maskrcnn_benchmark.engine.predictor_glip import GLIPDemo
|
| 11 |
import vqa
|
| 12 |
-
import
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Use this command for evaluate the GLIP-T model
|
| 15 |
config_file = "configs/glip_Swin_T_O365_GoldG.yaml"
|
|
@@ -30,28 +34,67 @@ glip_demo = GLIPDemo(
|
|
| 30 |
)
|
| 31 |
blip_demo = vqa.VQA(
|
| 32 |
model_path = 'checkpoints/model_base_vqa_capfilt_large.pth'
|
| 33 |
-
)
|
| 34 |
|
| 35 |
-
def
|
| 36 |
result, _ = glip_demo.run_on_web_image(image[:, :, [2, 1, 0]], object, 0.5)
|
|
|
|
| 37 |
answer = blip_demo.vqa_demo(image, question)
|
| 38 |
-
return result
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
|
| 3 |
+
from numpy import true_divide
|
| 4 |
import gradio as gr
|
| 5 |
import warnings
|
| 6 |
|
|
|
|
| 11 |
from maskrcnn_benchmark.config import cfg
|
| 12 |
from maskrcnn_benchmark.engine.predictor_glip import GLIPDemo
|
| 13 |
import vqa
|
| 14 |
+
import cv2
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import numpy as np
|
| 17 |
|
| 18 |
# Use this command for evaluate the GLIP-T model
|
| 19 |
config_file = "configs/glip_Swin_T_O365_GoldG.yaml"
|
|
|
|
| 34 |
)
|
| 35 |
blip_demo = vqa.VQA(
|
| 36 |
model_path = 'checkpoints/model_base_vqa_capfilt_large.pth'
|
|
|
|
| 37 |
|
| 38 |
+
def predict_image(image, object, question):
|
| 39 |
result, _ = glip_demo.run_on_web_image(image[:, :, [2, 1, 0]], object, 0.5)
|
| 40 |
+
result = result[:, :, [2, 1, 0]]
|
| 41 |
answer = blip_demo.vqa_demo(image, question)
|
| 42 |
+
return result, answer
|
| 43 |
+
|
| 44 |
+
def predict_video(video, object, question, frame_drop_value):
|
| 45 |
+
vid = cv2.VideoCapture(video)
|
| 46 |
+
count = 0
|
| 47 |
+
while True:
|
| 48 |
+
ret, frame = vid.read()
|
| 49 |
+
if ret:
|
| 50 |
+
count+=1
|
| 51 |
+
if count % frame_drop_value == 0:
|
| 52 |
+
# image = Image.fromarray(frame)
|
| 53 |
+
image = frame
|
| 54 |
+
cv2.putText(
|
| 55 |
+
img = image,
|
| 56 |
+
text = str(count),
|
| 57 |
+
org = (20, 20),
|
| 58 |
+
fontFace = cv2.FONT_HERSHEY_DUPLEX,
|
| 59 |
+
fontScale = 0.5,
|
| 60 |
+
color = (125, 246, 55),
|
| 61 |
+
thickness = 1)
|
| 62 |
+
result, _ = glip_demo.run_on_web_image(image[:, :, [2, 1, 0]], object, 0.5)
|
| 63 |
+
answer = blip_demo.vqa_demo(image, question)
|
| 64 |
+
yield result, answer
|
| 65 |
+
else:
|
| 66 |
+
break
|
| 67 |
+
|
| 68 |
+
yield result, answer
|
| 69 |
+
|
| 70 |
+
with gr.Blocks() as demo:
|
| 71 |
+
gr.Markdown("Text-Based Object Detection and Visual Question Answering")
|
| 72 |
+
with gr.Tab("Image"):
|
| 73 |
+
with gr.Row():
|
| 74 |
+
with gr.Column():
|
| 75 |
+
image_input = gr.Image(label='input image')
|
| 76 |
+
obj_input = gr.Textbox(label='Objects', lines=1, placeholder="Objects here..")
|
| 77 |
+
vqa_input = gr.Textbox(label='Question', lines=1, placeholder="Question here..")
|
| 78 |
+
image_button = gr.Button("Submit")
|
| 79 |
+
|
| 80 |
+
with gr.Column():
|
| 81 |
+
image_output = gr.outputs.Image(type="pil", label="grounding results")
|
| 82 |
+
vqa_output = gr.Textbox(label="Answer")
|
| 83 |
+
|
| 84 |
+
with gr.Tab("Video"):
|
| 85 |
+
with gr.Row():
|
| 86 |
+
with gr.Column():
|
| 87 |
+
video_input = gr.PlayableVideo(label='input video', mirror_webcam=False)
|
| 88 |
+
obj_input_video = gr.Textbox(label='Objects', lines=1, placeholder="Objects here..")
|
| 89 |
+
vqa_input_video = gr.Textbox(label='Question', lines=1, placeholder="Question here..")
|
| 90 |
+
frame_drop_input = gr.Slider(label='Frames drop value', minimum=0, maximum=30, step=1, value=5)
|
| 91 |
+
video_button = gr.Button("Submit")
|
| 92 |
+
|
| 93 |
+
with gr.Column():
|
| 94 |
+
video_output = gr.outputs.Image(type="pil", label="grounding results")
|
| 95 |
+
vqa_output_video = gr.Textbox(label="Answer")
|
| 96 |
+
|
| 97 |
+
image_button.click(predict_image, inputs=[image_input, obj_input, vqa_input], outputs=[image_output, vqa_output])
|
| 98 |
+
video_button.click(predict_video, inputs=[video_input, obj_input_video, vqa_input_video, frame_drop_input], outputs=[video_output, vqa_output_video])
|
| 99 |
+
demo.queue()
|
| 100 |
+
demo.launch()
|