Spaces:
Runtime error
Runtime error
| from maskrcnn_benchmark.data import datasets | |
| from .coco import coco_evaluation | |
| from .voc import voc_evaluation | |
| from .vg import vg_evaluation | |
| from .box_aug import im_detect_bbox_aug | |
| from .od_to_grounding import od_to_grounding_evaluation | |
| def evaluate(dataset, predictions, output_folder, **kwargs): | |
| """evaluate dataset using different methods based on dataset type. | |
| Args: | |
| dataset: Dataset object | |
| predictions(list[BoxList]): each item in the list represents the | |
| prediction results for one image. | |
| output_folder: output folder, to save evaluation files or results. | |
| **kwargs: other args. | |
| Returns: | |
| evaluation result | |
| """ | |
| args = dict( | |
| dataset=dataset, predictions=predictions, output_folder=output_folder, **kwargs | |
| ) | |
| if isinstance(dataset, datasets.COCODataset) or isinstance(dataset, datasets.TSVDataset): | |
| return coco_evaluation(**args) | |
| # elif isinstance(dataset, datasets.VGTSVDataset): | |
| # return vg_evaluation(**args) | |
| elif isinstance(dataset, datasets.PascalVOCDataset): | |
| return voc_evaluation(**args) | |
| elif isinstance(dataset, datasets.CocoDetectionTSV): | |
| return od_to_grounding_evaluation(**args) | |
| elif isinstance(dataset, datasets.LvisDetection): | |
| pass | |
| else: | |
| dataset_name = dataset.__class__.__name__ | |
| raise NotImplementedError("Unsupported dataset type {}.".format(dataset_name)) | |
| def evaluate_mdetr(dataset, predictions, output_folder, cfg): | |
| args = dict( | |
| dataset=dataset, predictions=predictions, output_folder=output_folder, **kwargs | |
| ) | |
| if isinstance(dataset, datasets.COCODataset) or isinstance(dataset, datasets.TSVDataset): | |
| return coco_evaluation(**args) | |
| # elif isinstance(dataset, datasets.VGTSVDataset): | |
| # return vg_evaluation(**args) | |
| elif isinstance(dataset, datasets.PascalVOCDataset): | |
| return voc_evaluation(**args) | |
| elif isinstance(dataset, datasets.CocoDetectionTSV): | |
| return od_to_grounding_evaluation(**args) | |
| elif isinstance(dataset, datasets.LvisDetection): | |
| pass | |
| else: | |
| dataset_name = dataset.__class__.__name__ | |
| raise NotImplementedError("Unsupported dataset type {}.".format(dataset_name)) | |