Spaces:
Runtime error
Runtime error
| ''' | |
| * Copyright (c) 2022, salesforce.com, inc. | |
| * All rights reserved. | |
| * SPDX-License-Identifier: BSD-3-Clause | |
| * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
| * By Junnan Li | |
| ''' | |
| from models.med import BertConfig, BertModel, BertLMHeadModel | |
| from transformers import BertTokenizer | |
| import transformers | |
| transformers.logging.set_verbosity_error() | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| from models.blip import create_vit, init_tokenizer, load_checkpoint | |
| class BLIP_Pretrain(nn.Module): | |
| def __init__(self, | |
| med_config = 'configs/bert_config.json', | |
| image_size = 224, | |
| vit = 'base', | |
| vit_grad_ckpt = False, | |
| vit_ckpt_layer = 0, | |
| embed_dim = 256, | |
| queue_size = 57600, | |
| momentum = 0.995, | |
| ): | |
| """ | |
| Args: | |
| med_config (str): path for the mixture of encoder-decoder model's configuration file | |
| image_size (int): input image size | |
| vit (str): model size of vision transformer | |
| """ | |
| super().__init__() | |
| self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0) | |
| if vit=='base': | |
| checkpoint = torch.hub.load_state_dict_from_url( | |
| url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", | |
| map_location="cpu", check_hash=True) | |
| state_dict = checkpoint["model"] | |
| msg = self.visual_encoder.load_state_dict(state_dict,strict=False) | |
| elif vit=='large': | |
| from timm.models.helpers import load_custom_pretrained | |
| from timm.models.vision_transformer import default_cfgs | |
| load_custom_pretrained(self.visual_encoder,default_cfgs['vit_large_patch16_224_in21k']) | |
| self.tokenizer = init_tokenizer() | |
| encoder_config = BertConfig.from_json_file(med_config) | |
| encoder_config.encoder_width = vision_width | |
| self.text_encoder = BertModel.from_pretrained('bert-base-uncased',config=encoder_config, add_pooling_layer=False) | |
| self.text_encoder.resize_token_embeddings(len(self.tokenizer)) | |
| text_width = self.text_encoder.config.hidden_size | |
| self.vision_proj = nn.Linear(vision_width, embed_dim) | |
| self.text_proj = nn.Linear(text_width, embed_dim) | |
| self.itm_head = nn.Linear(text_width, 2) | |
| # create momentum encoders | |
| self.visual_encoder_m, vision_width = create_vit(vit,image_size) | |
| self.vision_proj_m = nn.Linear(vision_width, embed_dim) | |
| self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False) | |
| self.text_proj_m = nn.Linear(text_width, embed_dim) | |
| self.model_pairs = [[self.visual_encoder,self.visual_encoder_m], | |
| [self.vision_proj,self.vision_proj_m], | |
| [self.text_encoder,self.text_encoder_m], | |
| [self.text_proj,self.text_proj_m], | |
| ] | |
| self.copy_params() | |
| # create the queue | |
| self.register_buffer("image_queue", torch.randn(embed_dim, queue_size)) | |
| self.register_buffer("text_queue", torch.randn(embed_dim, queue_size)) | |
| self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long)) | |
| self.image_queue = nn.functional.normalize(self.image_queue, dim=0) | |
| self.text_queue = nn.functional.normalize(self.text_queue, dim=0) | |
| self.queue_size = queue_size | |
| self.momentum = momentum | |
| self.temp = nn.Parameter(0.07*torch.ones([])) | |
| # create the decoder | |
| decoder_config = BertConfig.from_json_file(med_config) | |
| decoder_config.encoder_width = vision_width | |
| self.text_decoder = BertLMHeadModel.from_pretrained('bert-base-uncased',config=decoder_config) | |
| self.text_decoder.resize_token_embeddings(len(self.tokenizer)) | |
| tie_encoder_decoder_weights(self.text_encoder,self.text_decoder.bert,'','/attention') | |
| def forward(self, image, caption, alpha): | |
| with torch.no_grad(): | |
| self.temp.clamp_(0.001,0.5) | |
| image_embeds = self.visual_encoder(image) | |
| image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
| image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1) | |
| text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=30, | |
| return_tensors="pt").to(image.device) | |
| text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, | |
| return_dict = True, mode = 'text') | |
| text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1) | |
| # get momentum features | |
| with torch.no_grad(): | |
| self._momentum_update() | |
| image_embeds_m = self.visual_encoder_m(image) | |
| image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1) | |
| image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1) | |
| text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask, | |
| return_dict = True, mode = 'text') | |
| text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1) | |
| text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1) | |
| sim_i2t_m = image_feat_m @ text_feat_all / self.temp | |
| sim_t2i_m = text_feat_m @ image_feat_all / self.temp | |
| sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device) | |
| sim_targets.fill_diagonal_(1) | |
| sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets | |
| sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets | |
| sim_i2t = image_feat @ text_feat_all / self.temp | |
| sim_t2i = text_feat @ image_feat_all / self.temp | |
| loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean() | |
| loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean() | |
| loss_ita = (loss_i2t+loss_t2i)/2 | |
| self._dequeue_and_enqueue(image_feat_m, text_feat_m) | |
| ###============== Image-text Matching ===================### | |
| encoder_input_ids = text.input_ids.clone() | |
| encoder_input_ids[:,0] = self.tokenizer.enc_token_id | |
| # forward the positve image-text pair | |
| bs = image.size(0) | |
| output_pos = self.text_encoder(encoder_input_ids, | |
| attention_mask = text.attention_mask, | |
| encoder_hidden_states = image_embeds, | |
| encoder_attention_mask = image_atts, | |
| return_dict = True, | |
| ) | |
| with torch.no_grad(): | |
| weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)+1e-4 | |
| weights_t2i.fill_diagonal_(0) | |
| weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)+1e-4 | |
| weights_i2t.fill_diagonal_(0) | |
| # select a negative image for each text | |
| image_embeds_neg = [] | |
| for b in range(bs): | |
| neg_idx = torch.multinomial(weights_t2i[b], 1).item() | |
| image_embeds_neg.append(image_embeds[neg_idx]) | |
| image_embeds_neg = torch.stack(image_embeds_neg,dim=0) | |
| # select a negative text for each image | |
| text_ids_neg = [] | |
| text_atts_neg = [] | |
| for b in range(bs): | |
| neg_idx = torch.multinomial(weights_i2t[b], 1).item() | |
| text_ids_neg.append(encoder_input_ids[neg_idx]) | |
| text_atts_neg.append(text.attention_mask[neg_idx]) | |
| text_ids_neg = torch.stack(text_ids_neg,dim=0) | |
| text_atts_neg = torch.stack(text_atts_neg,dim=0) | |
| text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0) | |
| text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0) | |
| image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0) | |
| image_atts_all = torch.cat([image_atts,image_atts],dim=0) | |
| output_neg = self.text_encoder(text_ids_all, | |
| attention_mask = text_atts_all, | |
| encoder_hidden_states = image_embeds_all, | |
| encoder_attention_mask = image_atts_all, | |
| return_dict = True, | |
| ) | |
| vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0) | |
| vl_output = self.itm_head(vl_embeddings) | |
| itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)], | |
| dim=0).to(image.device) | |
| loss_itm = F.cross_entropy(vl_output, itm_labels) | |
| ##================= LM ========================## | |
| decoder_input_ids = text.input_ids.clone() | |
| decoder_input_ids[:,0] = self.tokenizer.bos_token_id | |
| decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100) | |
| decoder_output = self.text_decoder(decoder_input_ids, | |
| attention_mask = text.attention_mask, | |
| encoder_hidden_states = image_embeds, | |
| encoder_attention_mask = image_atts, | |
| labels = decoder_targets, | |
| return_dict = True, | |
| ) | |
| loss_lm = decoder_output.loss | |
| return loss_ita, loss_itm, loss_lm | |
| def copy_params(self): | |
| for model_pair in self.model_pairs: | |
| for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()): | |
| param_m.data.copy_(param.data) # initialize | |
| param_m.requires_grad = False # not update by gradient | |
| def _momentum_update(self): | |
| for model_pair in self.model_pairs: | |
| for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()): | |
| param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum) | |
| def _dequeue_and_enqueue(self, image_feat, text_feat): | |
| # gather keys before updating queue | |
| image_feats = concat_all_gather(image_feat) | |
| text_feats = concat_all_gather(text_feat) | |
| batch_size = image_feats.shape[0] | |
| ptr = int(self.queue_ptr) | |
| assert self.queue_size % batch_size == 0 # for simplicity | |
| # replace the keys at ptr (dequeue and enqueue) | |
| self.image_queue[:, ptr:ptr + batch_size] = image_feats.T | |
| self.text_queue[:, ptr:ptr + batch_size] = text_feats.T | |
| ptr = (ptr + batch_size) % self.queue_size # move pointer | |
| self.queue_ptr[0] = ptr | |
| def blip_pretrain(**kwargs): | |
| model = BLIP_Pretrain(**kwargs) | |
| return model | |
| def concat_all_gather(tensor): | |
| """ | |
| Performs all_gather operation on the provided tensors. | |
| *** Warning ***: torch.distributed.all_gather has no gradient. | |
| """ | |
| tensors_gather = [torch.ones_like(tensor) | |
| for _ in range(torch.distributed.get_world_size())] | |
| torch.distributed.all_gather(tensors_gather, tensor, async_op=False) | |
| output = torch.cat(tensors_gather, dim=0) | |
| return output | |
| from typing import List | |
| def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str): | |
| uninitialized_encoder_weights: List[str] = [] | |
| if decoder.__class__ != encoder.__class__: | |
| logger.info( | |
| f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized." | |
| ) | |
| def tie_encoder_to_decoder_recursively( | |
| decoder_pointer: nn.Module, | |
| encoder_pointer: nn.Module, | |
| module_name: str, | |
| uninitialized_encoder_weights: List[str], | |
| skip_key: str, | |
| depth=0, | |
| ): | |
| assert isinstance(decoder_pointer, nn.Module) and isinstance( | |
| encoder_pointer, nn.Module | |
| ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module" | |
| if hasattr(decoder_pointer, "weight") and skip_key not in module_name: | |
| assert hasattr(encoder_pointer, "weight") | |
| encoder_pointer.weight = decoder_pointer.weight | |
| if hasattr(decoder_pointer, "bias"): | |
| assert hasattr(encoder_pointer, "bias") | |
| encoder_pointer.bias = decoder_pointer.bias | |
| print(module_name+' is tied') | |
| return | |
| encoder_modules = encoder_pointer._modules | |
| decoder_modules = decoder_pointer._modules | |
| if len(decoder_modules) > 0: | |
| assert ( | |
| len(encoder_modules) > 0 | |
| ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}" | |
| all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()]) | |
| encoder_layer_pos = 0 | |
| for name, module in decoder_modules.items(): | |
| if name.isdigit(): | |
| encoder_name = str(int(name) + encoder_layer_pos) | |
| decoder_name = name | |
| if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len( | |
| encoder_modules | |
| ) != len(decoder_modules): | |
| # this can happen if the name corresponds to the position in a list module list of layers | |
| # in this case the decoder has added a cross-attention that the encoder does not have | |
| # thus skip this step and subtract one layer pos from encoder | |
| encoder_layer_pos -= 1 | |
| continue | |
| elif name not in encoder_modules: | |
| continue | |
| elif depth > 500: | |
| raise ValueError( | |
| "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model." | |
| ) | |
| else: | |
| decoder_name = encoder_name = name | |
| tie_encoder_to_decoder_recursively( | |
| decoder_modules[decoder_name], | |
| encoder_modules[encoder_name], | |
| module_name + "/" + name, | |
| uninitialized_encoder_weights, | |
| skip_key, | |
| depth=depth + 1, | |
| ) | |
| all_encoder_weights.remove(module_name + "/" + encoder_name) | |
| uninitialized_encoder_weights += list(all_encoder_weights) | |
| # tie weights recursively | |
| tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key) | |