Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
| import torch | |
| from torch import nn | |
| from torch.autograd import Function | |
| from torch.autograd.function import once_differentiable | |
| from torch.nn.modules.utils import _pair | |
| from maskrcnn_benchmark import _C | |
| class _ROIAlign(Function): | |
| def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio): | |
| ctx.save_for_backward(roi) | |
| ctx.output_size = _pair(output_size) | |
| ctx.spatial_scale = spatial_scale | |
| ctx.sampling_ratio = sampling_ratio | |
| ctx.input_shape = input.size() | |
| output = _C.roi_align_forward( | |
| input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio | |
| ) | |
| return output | |
| def backward(ctx, grad_output): | |
| rois, = ctx.saved_tensors | |
| output_size = ctx.output_size | |
| spatial_scale = ctx.spatial_scale | |
| sampling_ratio = ctx.sampling_ratio | |
| bs, ch, h, w = ctx.input_shape | |
| grad_input = _C.roi_align_backward( | |
| grad_output, | |
| rois, | |
| spatial_scale, | |
| output_size[0], | |
| output_size[1], | |
| bs, | |
| ch, | |
| h, | |
| w, | |
| sampling_ratio, | |
| ) | |
| return grad_input, None, None, None, None | |
| try: | |
| import torchvision | |
| from torchvision.ops import roi_align | |
| except: | |
| roi_align = _ROIAlign.apply | |
| class ROIAlign(nn.Module): | |
| def __init__(self, output_size, spatial_scale, sampling_ratio): | |
| super(ROIAlign, self).__init__() | |
| self.output_size = output_size | |
| self.spatial_scale = spatial_scale | |
| self.sampling_ratio = sampling_ratio | |
| def forward(self, input, rois): | |
| return roi_align( | |
| input, rois, self.output_size, self.spatial_scale, self.sampling_ratio | |
| ) | |
| def __repr__(self): | |
| tmpstr = self.__class__.__name__ + "(" | |
| tmpstr += "output_size=" + str(self.output_size) | |
| tmpstr += ", spatial_scale=" + str(self.spatial_scale) | |
| tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) | |
| tmpstr += ")" | |
| return tmpstr | |
| class ROIAlignV2(nn.Module): | |
| def __init__(self, output_size, spatial_scale, sampling_ratio): | |
| super(ROIAlignV2, self).__init__() | |
| self.output_size = output_size | |
| self.spatial_scale = spatial_scale | |
| self.sampling_ratio = sampling_ratio | |
| def forward(self, input, rois): | |
| return torchvision.ops.roi_align( | |
| input, rois, self.output_size, self.spatial_scale, self.sampling_ratio, aligned=True | |
| ) | |
| def __repr__(self): | |
| tmpstr = self.__class__.__name__ + "(" | |
| tmpstr += "output_size=" + str(self.output_size) | |
| tmpstr += ", spatial_scale=" + str(self.spatial_scale) | |
| tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) | |
| tmpstr += ")" | |
| return tmpstr | |