Spaces:
Runtime error
Runtime error
| """ | |
| FBNet model builder | |
| """ | |
| from __future__ import absolute_import, division, print_function, unicode_literals | |
| import copy | |
| import logging | |
| import math | |
| from collections import OrderedDict | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import BatchNorm2d, SyncBatchNorm | |
| from maskrcnn_benchmark.layers import Conv2d, interpolate | |
| from maskrcnn_benchmark.layers import NaiveSyncBatchNorm2d, FrozenBatchNorm2d | |
| from maskrcnn_benchmark.layers.misc import _NewEmptyTensorOp | |
| logger = logging.getLogger(__name__) | |
| def _py2_round(x): | |
| return math.floor(x + 0.5) if x >= 0.0 else math.ceil(x - 0.5) | |
| def _get_divisible_by(num, divisible_by, min_val): | |
| ret = int(num) | |
| if divisible_by > 0 and num % divisible_by != 0: | |
| ret = int((_py2_round(num / divisible_by) or min_val) * divisible_by) | |
| return ret | |
| class Identity(nn.Module): | |
| def __init__(self, C_in, C_out, stride): | |
| super(Identity, self).__init__() | |
| self.conv = ( | |
| ConvBNRelu( | |
| C_in, | |
| C_out, | |
| kernel=1, | |
| stride=stride, | |
| pad=0, | |
| no_bias=1, | |
| use_relu="relu", | |
| bn_type="bn", | |
| ) | |
| if C_in != C_out or stride != 1 | |
| else None | |
| ) | |
| def forward(self, x): | |
| if self.conv: | |
| out = self.conv(x) | |
| else: | |
| out = x | |
| return out | |
| class CascadeConv3x3(nn.Sequential): | |
| def __init__(self, C_in, C_out, stride): | |
| assert stride in [1, 2] | |
| ops = [ | |
| Conv2d(C_in, C_in, 3, stride, 1, bias=False), | |
| BatchNorm2d(C_in), | |
| nn.ReLU(inplace=True), | |
| Conv2d(C_in, C_out, 3, 1, 1, bias=False), | |
| BatchNorm2d(C_out), | |
| ] | |
| super(CascadeConv3x3, self).__init__(*ops) | |
| self.res_connect = (stride == 1) and (C_in == C_out) | |
| def forward(self, x): | |
| y = super(CascadeConv3x3, self).forward(x) | |
| if self.res_connect: | |
| y += x | |
| return y | |
| class Shift(nn.Module): | |
| def __init__(self, C, kernel_size, stride, padding): | |
| super(Shift, self).__init__() | |
| self.C = C | |
| kernel = torch.zeros((C, 1, kernel_size, kernel_size), dtype=torch.float32) | |
| ch_idx = 0 | |
| assert stride in [1, 2] | |
| self.stride = stride | |
| self.padding = padding | |
| self.kernel_size = kernel_size | |
| self.dilation = 1 | |
| hks = kernel_size // 2 | |
| ksq = kernel_size ** 2 | |
| for i in range(kernel_size): | |
| for j in range(kernel_size): | |
| if i == hks and j == hks: | |
| num_ch = C // ksq + C % ksq | |
| else: | |
| num_ch = C // ksq | |
| kernel[ch_idx : ch_idx + num_ch, 0, i, j] = 1 | |
| ch_idx += num_ch | |
| self.register_parameter("bias", None) | |
| self.kernel = nn.Parameter(kernel, requires_grad=False) | |
| def forward(self, x): | |
| if x.numel() > 0: | |
| return nn.functional.conv2d( | |
| x, | |
| self.kernel, | |
| self.bias, | |
| (self.stride, self.stride), | |
| (self.padding, self.padding), | |
| self.dilation, | |
| self.C, # groups | |
| ) | |
| output_shape = [ | |
| (i + 2 * p - (di * (k - 1) + 1)) // d + 1 | |
| for i, p, di, k, d in zip( | |
| x.shape[-2:], | |
| (self.padding, self.dilation), | |
| (self.dilation, self.dilation), | |
| (self.kernel_size, self.kernel_size), | |
| (self.stride, self.stride), | |
| ) | |
| ] | |
| output_shape = [x.shape[0], self.C] + output_shape | |
| return _NewEmptyTensorOp.apply(x, output_shape) | |
| class ShiftBlock5x5(nn.Sequential): | |
| def __init__(self, C_in, C_out, expansion, stride): | |
| assert stride in [1, 2] | |
| self.res_connect = (stride == 1) and (C_in == C_out) | |
| C_mid = _get_divisible_by(C_in * expansion, 8, 8) | |
| ops = [ | |
| # pw | |
| Conv2d(C_in, C_mid, 1, 1, 0, bias=False), | |
| BatchNorm2d(C_mid), | |
| nn.ReLU(inplace=True), | |
| # shift | |
| Shift(C_mid, 5, stride, 2), | |
| # pw-linear | |
| Conv2d(C_mid, C_out, 1, 1, 0, bias=False), | |
| BatchNorm2d(C_out), | |
| ] | |
| super(ShiftBlock5x5, self).__init__(*ops) | |
| def forward(self, x): | |
| y = super(ShiftBlock5x5, self).forward(x) | |
| if self.res_connect: | |
| y += x | |
| return y | |
| class ChannelShuffle(nn.Module): | |
| def __init__(self, groups): | |
| super(ChannelShuffle, self).__init__() | |
| self.groups = groups | |
| def forward(self, x): | |
| """Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]""" | |
| N, C, H, W = x.size() | |
| g = self.groups | |
| assert C % g == 0, "Incompatible group size {} for input channel {}".format( | |
| g, C | |
| ) | |
| return ( | |
| x.view(N, g, int(C / g), H, W) | |
| .permute(0, 2, 1, 3, 4) | |
| .contiguous() | |
| .view(N, C, H, W) | |
| ) | |
| class ConvBNRelu(nn.Sequential): | |
| def __init__( | |
| self, | |
| input_depth, | |
| output_depth, | |
| kernel, | |
| stride, | |
| pad, | |
| no_bias, | |
| use_relu, | |
| bn_type, | |
| group=1, | |
| *args, | |
| **kwargs | |
| ): | |
| super(ConvBNRelu, self).__init__() | |
| assert use_relu in ["relu", None] | |
| if isinstance(bn_type, (list, tuple)): | |
| assert len(bn_type) == 2 | |
| assert bn_type[0] == "gn" | |
| gn_group = bn_type[1] | |
| bn_type = bn_type[0] | |
| assert bn_type in ["bn", "nsbn", "sbn", "af", "gn", None] | |
| assert stride in [1, 2, 4] | |
| op = Conv2d( | |
| input_depth, | |
| output_depth, | |
| kernel_size=kernel, | |
| stride=stride, | |
| padding=pad, | |
| bias=not no_bias, | |
| groups=group, | |
| *args, | |
| **kwargs | |
| ) | |
| nn.init.kaiming_normal_(op.weight, mode="fan_out", nonlinearity="relu") | |
| if op.bias is not None: | |
| nn.init.constant_(op.bias, 0.0) | |
| self.add_module("conv", op) | |
| if bn_type == "bn": | |
| bn_op = BatchNorm2d(output_depth) | |
| elif bn_type == "sbn": | |
| bn_op = SyncBatchNorm(output_depth) | |
| elif bn_type == "nsbn": | |
| bn_op = NaiveSyncBatchNorm2d(output_depth) | |
| elif bn_type == "gn": | |
| bn_op = nn.GroupNorm(num_groups=gn_group, num_channels=output_depth) | |
| elif bn_type == "af": | |
| bn_op = FrozenBatchNorm2d(output_depth) | |
| if bn_type is not None: | |
| self.add_module("bn", bn_op) | |
| if use_relu == "relu": | |
| self.add_module("relu", nn.ReLU(inplace=True)) | |
| class SEModule(nn.Module): | |
| reduction = 4 | |
| def __init__(self, C): | |
| super(SEModule, self).__init__() | |
| mid = max(C // self.reduction, 8) | |
| conv1 = Conv2d(C, mid, 1, 1, 0) | |
| conv2 = Conv2d(mid, C, 1, 1, 0) | |
| self.op = nn.Sequential( | |
| nn.AdaptiveAvgPool2d(1), conv1, nn.ReLU(inplace=True), conv2, nn.Sigmoid() | |
| ) | |
| def forward(self, x): | |
| return x * self.op(x) | |
| class Upsample(nn.Module): | |
| def __init__(self, scale_factor, mode, align_corners=None): | |
| super(Upsample, self).__init__() | |
| self.scale = scale_factor | |
| self.mode = mode | |
| self.align_corners = align_corners | |
| def forward(self, x): | |
| return interpolate( | |
| x, scale_factor=self.scale, mode=self.mode, | |
| align_corners=self.align_corners | |
| ) | |
| def _get_upsample_op(stride): | |
| assert ( | |
| stride in [1, 2, 4] | |
| or stride in [-1, -2, -4] | |
| or (isinstance(stride, tuple) and all(x in [-1, -2, -4] for x in stride)) | |
| ) | |
| scales = stride | |
| ret = None | |
| if isinstance(stride, tuple) or stride < 0: | |
| scales = [-x for x in stride] if isinstance(stride, tuple) else -stride | |
| stride = 1 | |
| ret = Upsample(scale_factor=scales, mode="nearest", align_corners=None) | |
| return ret, stride | |
| class IRFBlock(nn.Module): | |
| def __init__( | |
| self, | |
| input_depth, | |
| output_depth, | |
| expansion, | |
| stride, | |
| bn_type="bn", | |
| kernel=3, | |
| width_divisor=1, | |
| shuffle_type=None, | |
| pw_group=1, | |
| se=False, | |
| cdw=False, | |
| dw_skip_bn=False, | |
| dw_skip_relu=False, | |
| ): | |
| super(IRFBlock, self).__init__() | |
| assert kernel in [1, 3, 5, 7], kernel | |
| self.use_res_connect = stride == 1 and input_depth == output_depth | |
| self.output_depth = output_depth | |
| mid_depth = int(input_depth * expansion) | |
| mid_depth = _get_divisible_by(mid_depth, width_divisor, width_divisor) | |
| # pw | |
| self.pw = ConvBNRelu( | |
| input_depth, | |
| mid_depth, | |
| kernel=1, | |
| stride=1, | |
| pad=0, | |
| no_bias=1, | |
| use_relu="relu", | |
| bn_type=bn_type, | |
| group=pw_group, | |
| ) | |
| # negative stride to do upsampling | |
| self.upscale, stride = _get_upsample_op(stride) | |
| # dw | |
| if kernel == 1: | |
| self.dw = nn.Sequential() | |
| elif cdw: | |
| dw1 = ConvBNRelu( | |
| mid_depth, | |
| mid_depth, | |
| kernel=kernel, | |
| stride=stride, | |
| pad=(kernel // 2), | |
| group=mid_depth, | |
| no_bias=1, | |
| use_relu="relu", | |
| bn_type=bn_type, | |
| ) | |
| dw2 = ConvBNRelu( | |
| mid_depth, | |
| mid_depth, | |
| kernel=kernel, | |
| stride=1, | |
| pad=(kernel // 2), | |
| group=mid_depth, | |
| no_bias=1, | |
| use_relu="relu" if not dw_skip_relu else None, | |
| bn_type=bn_type if not dw_skip_bn else None, | |
| ) | |
| self.dw = nn.Sequential(OrderedDict([("dw1", dw1), ("dw2", dw2)])) | |
| else: | |
| self.dw = ConvBNRelu( | |
| mid_depth, | |
| mid_depth, | |
| kernel=kernel, | |
| stride=stride, | |
| pad=(kernel // 2), | |
| group=mid_depth, | |
| no_bias=1, | |
| use_relu="relu" if not dw_skip_relu else None, | |
| bn_type=bn_type if not dw_skip_bn else None, | |
| ) | |
| # pw-linear | |
| self.pwl = ConvBNRelu( | |
| mid_depth, | |
| output_depth, | |
| kernel=1, | |
| stride=1, | |
| pad=0, | |
| no_bias=1, | |
| use_relu=None, | |
| bn_type=bn_type, | |
| group=pw_group, | |
| ) | |
| self.shuffle_type = shuffle_type | |
| if shuffle_type is not None: | |
| self.shuffle = ChannelShuffle(pw_group) | |
| self.se4 = SEModule(output_depth) if se else nn.Sequential() | |
| self.output_depth = output_depth | |
| def forward(self, x): | |
| y = self.pw(x) | |
| if self.shuffle_type == "mid": | |
| y = self.shuffle(y) | |
| if self.upscale is not None: | |
| y = self.upscale(y) | |
| y = self.dw(y) | |
| y = self.pwl(y) | |
| if self.use_res_connect: | |
| y += x | |
| y = self.se4(y) | |
| return y | |
| skip = lambda C_in, C_out, stride, **kwargs: Identity( | |
| C_in, C_out, stride | |
| ) | |
| basic_block = lambda C_in, C_out, stride, **kwargs: CascadeConv3x3( | |
| C_in, C_out, stride | |
| ) | |
| # layer search 2 | |
| ir_k3_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 1, stride, kernel=3, **kwargs | |
| ) | |
| ir_k3_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 3, stride, kernel=3, **kwargs | |
| ) | |
| ir_k3_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 6, stride, kernel=3, **kwargs | |
| ) | |
| ir_k3_s4 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 4, stride, kernel=3, shuffle_type="mid", pw_group=4, **kwargs | |
| ) | |
| ir_k5_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 1, stride, kernel=5, **kwargs | |
| ) | |
| ir_k5_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 3, stride, kernel=5, **kwargs | |
| ) | |
| ir_k5_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 6, stride, kernel=5, **kwargs | |
| ) | |
| ir_k5_s4 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 4, stride, kernel=5, shuffle_type="mid", pw_group=4, **kwargs | |
| ) | |
| # layer search se | |
| ir_k3_e1_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 1, stride, kernel=3, se=True, **kwargs | |
| ) | |
| ir_k3_e3_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 3, stride, kernel=3, se=True, **kwargs | |
| ) | |
| ir_k3_e6_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 6, stride, kernel=3, se=True, **kwargs | |
| ) | |
| ir_k3_s4_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, | |
| C_out, | |
| 4, | |
| stride, | |
| kernel=3, | |
| shuffle_type=mid, | |
| pw_group=4, | |
| se=True, | |
| **kwargs | |
| ) | |
| ir_k5_e1_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 1, stride, kernel=5, se=True, **kwargs | |
| ) | |
| ir_k5_e3_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 3, stride, kernel=5, se=True, **kwargs | |
| ) | |
| ir_k5_e6_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 6, stride, kernel=5, se=True, **kwargs | |
| ) | |
| ir_k5_s4_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, | |
| C_out, | |
| 4, | |
| stride, | |
| kernel=5, | |
| shuffle_type="mid", | |
| pw_group=4, | |
| se=True, | |
| **kwargs | |
| ) | |
| # layer search 3 (in addition to layer search 2) | |
| ir_k3_s2 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 1, stride, kernel=3, shuffle_type="mid", pw_group=2, **kwargs | |
| ) | |
| ir_k5_s2 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 1, stride, kernel=5, shuffle_type="mid", pw_group=2, **kwargs | |
| ) | |
| ir_k3_s2_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, | |
| C_out, | |
| 1, | |
| stride, | |
| kernel=3, | |
| shuffle_type="mid", | |
| pw_group=2, | |
| se=True, | |
| **kwargs | |
| ) | |
| ir_k5_s2_se = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, | |
| C_out, | |
| 1, | |
| stride, | |
| kernel=5, | |
| shuffle_type="mid", | |
| pw_group=2, | |
| se=True, | |
| **kwargs | |
| ) | |
| # layer search 4 (in addition to layer search 3) | |
| ir_k33_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 1, stride, kernel=3, cdw=True, **kwargs | |
| ) | |
| ir_k33_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 3, stride, kernel=3, cdw=True, **kwargs | |
| ) | |
| ir_k33_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 6, stride, kernel=3, cdw=True, **kwargs | |
| ) | |
| # layer search 5 (in addition to layer search 4) | |
| ir_k7_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 1, stride, kernel=7, **kwargs | |
| ) | |
| ir_k7_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 3, stride, kernel=7, **kwargs | |
| ) | |
| ir_k7_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 6, stride, kernel=7, **kwargs | |
| ) | |
| ir_k7_sep_e1 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 1, stride, kernel=7, cdw=True, **kwargs | |
| ) | |
| ir_k7_sep_e3 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 3, stride, kernel=7, cdw=True, **kwargs | |
| ) | |
| ir_k7_sep_e6 = lambda C_in, C_out, stride, **kwargs: IRFBlock( | |
| C_in, C_out, 6, stride, kernel=7, cdw=True, **kwargs | |
| ) |