Spaces:
Runtime error
Runtime error
| from collections import OrderedDict | |
| from torch import nn | |
| from maskrcnn_benchmark.modeling import registry | |
| from maskrcnn_benchmark.modeling.make_layers import conv_with_kaiming_uniform | |
| from maskrcnn_benchmark.layers import DropBlock2D, DyHead | |
| from . import fpn as fpn_module | |
| from . import bifpn | |
| from . import resnet | |
| from . import efficientnet | |
| from . import efficientdet | |
| from . import swint | |
| from . import swint_v2 | |
| from . import swint_vl | |
| from . import swint_v2_vl | |
| def build_resnet_backbone(cfg): | |
| body = resnet.ResNet(cfg) | |
| model = nn.Sequential(OrderedDict([("body", body)])) | |
| return model | |
| def build_resnet_c5_backbone(cfg): | |
| body = resnet.ResNet(cfg) | |
| model = nn.Sequential(OrderedDict([("body", body)])) | |
| return model | |
| def build_retinanet_swint_fpn_backbone(cfg): | |
| """ | |
| Args: | |
| cfg: a detectron2 CfgNode | |
| Returns: | |
| backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. | |
| """ | |
| if cfg.MODEL.SWINT.VERSION == "v1": | |
| body = swint.build_swint_backbone(cfg) | |
| elif cfg.MODEL.SWINT.VERSION == "v2": | |
| body = swint_v2.build_swint_backbone(cfg) | |
| elif cfg.MODEL.SWINT.VERSION == "vl": | |
| body = swint_vl.build_swint_backbone(cfg) | |
| elif cfg.MODEL.SWINT.VERSION == "v2_vl": | |
| body = swint_v2_vl.build_swint_backbone(cfg) | |
| in_channels_stages = cfg.MODEL.SWINT.OUT_CHANNELS | |
| out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
| in_channels_p6p7 = out_channels | |
| fpn = fpn_module.FPN( | |
| in_channels_list=[ | |
| 0, | |
| in_channels_stages[-3], | |
| in_channels_stages[-2], | |
| in_channels_stages[-1], | |
| ], | |
| out_channels=out_channels, | |
| conv_block=conv_with_kaiming_uniform( | |
| cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU | |
| ), | |
| top_blocks=fpn_module.LastLevelP6P7(in_channels_p6p7, out_channels), | |
| drop_block=DropBlock2D(cfg.MODEL.FPN.DROP_PROB, cfg.MODEL.FPN.DROP_SIZE) if cfg.MODEL.FPN.DROP_BLOCK else None, | |
| use_spp=cfg.MODEL.FPN.USE_SPP, | |
| use_pan=cfg.MODEL.FPN.USE_PAN, | |
| return_swint_feature_before_fusion=cfg.MODEL.FPN.RETURN_SWINT_FEATURE_BEFORE_FUSION | |
| ) | |
| if cfg.MODEL.FPN.USE_DYHEAD: | |
| dyhead = DyHead(cfg, out_channels) | |
| model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn), ("dyhead", dyhead)])) | |
| else: | |
| model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) | |
| return model | |
| def build_swint_fpn_backbone(cfg): | |
| """ | |
| Args: | |
| cfg: a detectron2 CfgNode | |
| Returns: | |
| backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. | |
| """ | |
| if cfg.MODEL.SWINT.VERSION == "v1": | |
| body = swint.build_swint_backbone(cfg) | |
| elif cfg.MODEL.SWINT.VERSION == "v2": | |
| body = swint_v2.build_swint_backbone(cfg) | |
| elif cfg.MODEL.SWINT.VERSION == "vl": | |
| body = swint_vl.build_swint_backbone(cfg) | |
| elif cfg.MODEL.SWINT.VERSION == "v2_vl": | |
| body = swint_v2_vl.build_swint_backbone(cfg) | |
| in_channels_stages = cfg.MODEL.SWINT.OUT_CHANNELS | |
| out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
| fpn = fpn_module.FPN( | |
| in_channels_list=[ | |
| in_channels_stages[-4], | |
| in_channels_stages[-3], | |
| in_channels_stages[-2], | |
| in_channels_stages[-1], | |
| ], | |
| out_channels=out_channels, | |
| conv_block=conv_with_kaiming_uniform( | |
| cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU | |
| ), | |
| top_blocks=fpn_module.LastLevelMaxPool(), | |
| drop_block=DropBlock2D(cfg.MODEL.FPN.DROP_PROB, cfg.MODEL.FPN.DROP_SIZE) if cfg.MODEL.FPN.DROP_BLOCK else None, | |
| use_spp=cfg.MODEL.FPN.USE_SPP, | |
| use_pan=cfg.MODEL.FPN.USE_PAN | |
| ) | |
| if cfg.MODEL.FPN.USE_DYHEAD: | |
| dyhead = DyHead(cfg, out_channels) | |
| model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn), ("dyhead", dyhead)])) | |
| else: | |
| model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) | |
| return model | |
| def build_retinanet_cvt_fpn_backbone(cfg): | |
| """ | |
| Args: | |
| cfg: a detectron2 CfgNode | |
| Returns: | |
| backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. | |
| """ | |
| body = cvt.build_cvt_backbone(cfg) | |
| in_channels_stages = cfg.MODEL.SPEC.DIM_EMBED | |
| out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
| in_channels_p6p7 = out_channels | |
| fpn = fpn_module.FPN( | |
| in_channels_list=[ | |
| 0, | |
| in_channels_stages[-3], | |
| in_channels_stages[-2], | |
| in_channels_stages[-1], | |
| ], | |
| out_channels=out_channels, | |
| conv_block=conv_with_kaiming_uniform( | |
| cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU | |
| ), | |
| top_blocks=fpn_module.LastLevelP6P7(in_channels_p6p7, out_channels), | |
| drop_block=DropBlock2D(cfg.MODEL.FPN.DROP_PROB, cfg.MODEL.FPN.DROP_SIZE) if cfg.MODEL.FPN.DROP_BLOCK else None, | |
| use_spp=cfg.MODEL.FPN.USE_SPP, | |
| use_pan=cfg.MODEL.FPN.USE_PAN | |
| ) | |
| if cfg.MODEL.FPN.USE_DYHEAD: | |
| dyhead = DyHead(cfg, out_channels) | |
| model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn), ("dyhead", dyhead)])) | |
| else: | |
| model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) | |
| return model | |
| def build_eff_fpn_p6p7_backbone(cfg): | |
| version = cfg.MODEL.BACKBONE.CONV_BODY.split('-')[0] | |
| version = version.replace('EFFICIENT', 'b') | |
| body = efficientnet.get_efficientnet(cfg, version) | |
| in_channels_stage = body.out_channels | |
| out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
| in_channels_p6p7 = out_channels | |
| in_channels_stage[0] = 0 | |
| fpn = fpn_module.FPN( | |
| in_channels_list=in_channels_stage, | |
| out_channels=out_channels, | |
| conv_block=conv_with_kaiming_uniform( | |
| cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU | |
| ), | |
| top_blocks=fpn_module.LastLevelP6P7(in_channels_p6p7, out_channels), | |
| drop_block=DropBlock2D(cfg.MODEL.FPN.DROP_PROB, cfg.MODEL.FPN.DROP_SIZE) if cfg.MODEL.FPN.DROP_BLOCK else None, | |
| use_spp=cfg.MODEL.FPN.USE_SPP, | |
| use_pan=cfg.MODEL.FPN.USE_PAN | |
| ) | |
| model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) | |
| return model | |
| def build_eff_fpn_p6p7_backbone(cfg): | |
| version = cfg.MODEL.BACKBONE.CONV_BODY.split('-')[0] | |
| version = version.replace('EFFICIENT', 'b') | |
| body = efficientnet.get_efficientnet(cfg, version) | |
| in_channels_stage = body.out_channels | |
| out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
| bifpns = nn.ModuleList() | |
| for i in range(cfg.MODEL.BIFPN.NUM_REPEATS): | |
| first_time = (i==0) | |
| fpn = bifpn.BiFPN( | |
| in_channels_list=in_channels_stage[1:], | |
| out_channels=out_channels, | |
| first_time=first_time, | |
| attention=cfg.MODEL.BIFPN.USE_ATTENTION | |
| ) | |
| bifpns.append(fpn) | |
| model = nn.Sequential(OrderedDict([("body", body), ("bifpn", bifpns)])) | |
| return model | |
| def build_efficientdet_backbone(cfg): | |
| efficientdet.g_simple_padding = True | |
| compound = cfg.MODEL.BACKBONE.EFFICIENT_DET_COMPOUND | |
| start_from = cfg.MODEL.BACKBONE.EFFICIENT_DET_START_FROM | |
| model = efficientdet.EffNetFPN( | |
| compound_coef=compound, | |
| start_from=start_from, | |
| ) | |
| if cfg.MODEL.BACKBONE.USE_SYNCBN: | |
| import torch | |
| model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) | |
| return model | |
| def build_backbone(cfg): | |
| assert cfg.MODEL.BACKBONE.CONV_BODY in registry.BACKBONES, \ | |
| "cfg.MODEL.BACKBONE.CONV_BODY: {} are not registered in registry".format( | |
| cfg.MODEL.BACKBONE.CONV_BODY | |
| ) | |
| return registry.BACKBONES[cfg.MODEL.BACKBONE.CONV_BODY](cfg) | |