Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| os.system("python setup.py build develop --user") | |
| from maskrcnn_benchmark.config import cfg | |
| from maskrcnn_benchmark.engine.predictor_glip import GLIPDemo | |
| import vqa | |
| import vqa | |
| # Use this command for evaluate the GLIP-T model | |
| config_file = "configs/glip_Swin_T_O365_GoldG.yaml" | |
| weight_file = "checkpoints/glip_tiny_model_o365_goldg_cc_sbu.pth" | |
| # manual override some options | |
| cfg.local_rank = 0 | |
| cfg.num_gpus = 1 | |
| cfg.merge_from_file(config_file) | |
| cfg.merge_from_list(["MODEL.WEIGHT", weight_file]) | |
| cfg.merge_from_list(["MODEL.DEVICE", "cuda"]) | |
| glip_demo = GLIPDemo( | |
| cfg, | |
| min_image_size=800, | |
| confidence_threshold=0.7, | |
| show_mask_heatmaps=False | |
| ) | |
| blip_demo = vqa.VQA( | |
| model_path = 'checkpoints/model_base_vqa_capfilt_large.pth' | |
| ) | |
| def predict(image, object, question): | |
| result, _ = glip_demo.run_on_web_image(image[:, :, [2, 1, 0]], object, 0.5) | |
| answer = blip_demo.vqa_demo(image, question) | |
| return result[:, :, [2, 1, 0]], answer | |
| image = gr.inputs.Image() | |
| gr.Interface( | |
| description="GLIP + BLIP VQA Demo.", | |
| fn=predict, | |
| inputs=[ | |
| "image", | |
| gr.Textbox(label='Objects', lines=1, placeholder="Objects here.."), | |
| gr.Textbox(label='Question', lines=1, placeholder="Question here..")], | |
| outputs=[ | |
| gr.outputs.Image( | |
| type="pil", | |
| label="grounding results" | |
| ), | |
| gr.Textbox(label="Answer") | |
| ], | |
| ).launch() |