Update app.py
Browse files
app.py
CHANGED
|
@@ -1,130 +1,36 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import numpy as np
|
| 4 |
-
import PIL.Image
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import random
|
| 7 |
-
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
|
| 8 |
-
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
| 9 |
-
import cv2
|
| 10 |
import torch
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
pipe.to(device)
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
height=height,
|
| 41 |
-
generator=generator
|
| 42 |
-
).images[0]
|
| 43 |
-
|
| 44 |
-
return output_image
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
css = """
|
| 48 |
-
#col-container {
|
| 49 |
-
margin: 0 auto;
|
| 50 |
-
max-width: 520px;
|
| 51 |
-
}
|
| 52 |
-
"""
|
| 53 |
-
|
| 54 |
-
with gr.Blocks(css=css) as demo:
|
| 55 |
-
|
| 56 |
-
with gr.Column(elem_id="col-container"):
|
| 57 |
-
|
| 58 |
-
with gr.Row():
|
| 59 |
-
prompt = gr.Text(
|
| 60 |
-
label="Prompt",
|
| 61 |
-
show_label=False,
|
| 62 |
-
max_lines=1,
|
| 63 |
-
placeholder="Enter your prompt",
|
| 64 |
-
container=False,
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
run_button = gr.Button("Run", scale=0)
|
| 68 |
-
|
| 69 |
-
result = gr.Image(label="Result", show_label=False)
|
| 70 |
-
|
| 71 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 72 |
-
|
| 73 |
-
negative_prompt = gr.Text(
|
| 74 |
-
label="Negative prompt",
|
| 75 |
-
max_lines=1,
|
| 76 |
-
placeholder="Enter a negative prompt",
|
| 77 |
-
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
|
| 78 |
-
)
|
| 79 |
-
|
| 80 |
-
seed = gr.Slider(
|
| 81 |
-
label="Seed",
|
| 82 |
-
minimum=0,
|
| 83 |
-
maximum=MAX_SEED,
|
| 84 |
-
step=1,
|
| 85 |
-
value=0,
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 89 |
-
|
| 90 |
-
with gr.Row():
|
| 91 |
-
width = gr.Slider(
|
| 92 |
-
label="Width",
|
| 93 |
-
minimum=256,
|
| 94 |
-
maximum=MAX_IMAGE_SIZE,
|
| 95 |
-
step=32,
|
| 96 |
-
value=1024,#832,
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
height = gr.Slider(
|
| 100 |
-
label="Height",
|
| 101 |
-
minimum=256,
|
| 102 |
-
maximum=MAX_IMAGE_SIZE,
|
| 103 |
-
step=32,
|
| 104 |
-
value=1024,#1216,
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
with gr.Row():
|
| 108 |
-
guidance_scale = gr.Slider(
|
| 109 |
-
label="Guidance scale",
|
| 110 |
-
minimum=0.0,
|
| 111 |
-
maximum=20.0,
|
| 112 |
-
step=0.1,
|
| 113 |
-
value=7,
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
num_inference_steps = gr.Slider(
|
| 117 |
-
label="Number of inference steps",
|
| 118 |
-
minimum=1,
|
| 119 |
-
maximum=28,
|
| 120 |
-
step=1,
|
| 121 |
-
value=28,
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
run_button.click(#lambda x: None, inputs=None, outputs=result).then(
|
| 125 |
-
fn=infer,
|
| 126 |
-
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 127 |
-
outputs=[result]
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from diffusers import StableDiffusionPipeline
|
| 3 |
+
import gradio as gr
|
| 4 |
|
| 5 |
+
# ตรวจสอบว่าใช้ GPU ได้หรือไม่
|
| 6 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 7 |
|
| 8 |
+
# โหลดโมเดล Stable Diffusion จาก Hugging Face
|
| 9 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 10 |
+
"runwayml/stable-diffusion-v1-5",
|
| 11 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 12 |
+
revision="fp16" if device == "cuda" else "main",
|
| 13 |
+
use_auth_token=True # ต้อง login ผ่าน huggingface-cli ก่อน
|
| 14 |
)
|
| 15 |
|
| 16 |
+
# ส่งโมเดลไปยังอุปกรณ์ที่ใช้
|
| 17 |
+
pipe = pipe.to(device)
|
| 18 |
+
|
| 19 |
+
# ถ้าใช้ CPU แนะนำเปิด attention slicing เพื่อลดการใช้ RAM
|
| 20 |
+
if device == "cpu":
|
| 21 |
+
pipe.enable_attention_slicing()
|
| 22 |
+
|
| 23 |
+
# ฟังก์ชันสำหรับแปลงข้อความเป็นภาพ
|
| 24 |
+
def text_to_image(prompt):
|
| 25 |
+
with torch.autocast(device) if device == "cuda" else torch.inference_mode():
|
| 26 |
+
image = pipe(prompt).images[0]
|
| 27 |
+
return image
|
| 28 |
+
|
| 29 |
+
# Gradio Interface
|
| 30 |
+
gr.Interface(
|
| 31 |
+
fn=text_to_image,
|
| 32 |
+
inputs=gr.Textbox(label="📝 Text Prompt"),
|
| 33 |
+
outputs=gr.Image(label="🎨 Generated Image"),
|
| 34 |
+
title="🖼 Text-to-Image with Stable Diffusion",
|
| 35 |
+
description="แอปนี้สามารถรันบน CPU หรือ GPU ได้ตามเครื่องที่มี โดยใช้โมเดล Stable Diffusion จาก Hugging Face"
|
| 36 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|