Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
# import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import transformers
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
|
@@ -6,12 +5,11 @@ from transformers import StopStringCriteria, StoppingCriteriaList
|
|
| 6 |
|
| 7 |
from datasets import load_dataset, concatenate_datasets
|
| 8 |
import torch
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
llm = LLM(model="PhysicsWallahAI/Aryabhata-1.0")
|
| 12 |
-
sampling_params = SamplingParams(temperature=0.0, max_tokens=4*1024, stop=["<|im_end|>", "<|end|>", "<im_start|>", "```python\n", "<|im_start|>", "]}}]}}]"])
|
| 13 |
-
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def process_questions(example):
|
| 17 |
example["question_text"] = example["question"]
|
|
@@ -27,14 +25,53 @@ dataset = concatenate_datasets([
|
|
| 27 |
examples = dataset.map(process_questions, remove_columns=dataset.column_names)["question_text"]
|
| 28 |
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def generate_answer_stream(question):
|
| 31 |
messages = [
|
| 32 |
{'role': 'system', 'content': 'Think step-by-step; put only the final answer inside \\boxed{}.'},
|
| 33 |
{'role': 'user', 'content': question}
|
| 34 |
]
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
demo = gr.Interface(
|
| 40 |
fn=generate_answer_stream,
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import transformers
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
|
|
|
| 5 |
|
| 6 |
from datasets import load_dataset, concatenate_datasets
|
| 7 |
import torch
|
| 8 |
+
import threading
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
model_id = "PhysicsWallahAI/Aryabhata-1.0"
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
|
| 13 |
|
| 14 |
def process_questions(example):
|
| 15 |
example["question_text"] = example["question"]
|
|
|
|
| 25 |
examples = dataset.map(process_questions, remove_columns=dataset.column_names)["question_text"]
|
| 26 |
|
| 27 |
|
| 28 |
+
|
| 29 |
+
# add options
|
| 30 |
+
|
| 31 |
+
stop_strings = ["<|im_end|>", "<|end|>", "<im_start|>", "```python\n", "<|im_start|>", "]}}]}}]"]
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def strip_bad_tokens(s, stop_strings):
|
| 35 |
+
for suffix in stop_strings:
|
| 36 |
+
if s.endswith(suffix):
|
| 37 |
+
return s[:-len(suffix)]
|
| 38 |
+
return s
|
| 39 |
+
|
| 40 |
def generate_answer_stream(question):
|
| 41 |
messages = [
|
| 42 |
{'role': 'system', 'content': 'Think step-by-step; put only the final answer inside \\boxed{}.'},
|
| 43 |
{'role': 'user', 'content': question}
|
| 44 |
]
|
| 45 |
|
| 46 |
+
text = tokenizer.apply_chat_template(
|
| 47 |
+
messages,
|
| 48 |
+
tokenize=False,
|
| 49 |
+
add_generation_prompt=True
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
inputs = tokenizer([text], return_tensors="pt")
|
| 53 |
+
|
| 54 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 55 |
+
stopping = StoppingCriteriaList([StopStringCriteria(tokenizer, stop_strings)])
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
thread = threading.Thread(
|
| 59 |
+
target=model.generate,
|
| 60 |
+
kwargs=dict(
|
| 61 |
+
**inputs,
|
| 62 |
+
streamer=streamer,
|
| 63 |
+
max_new_tokens=4096,
|
| 64 |
+
stopping_criteria=stopping,
|
| 65 |
+
)
|
| 66 |
+
)
|
| 67 |
+
thread.start()
|
| 68 |
+
|
| 69 |
+
output = ""
|
| 70 |
+
for token in streamer:
|
| 71 |
+
print(token)
|
| 72 |
+
output += token
|
| 73 |
+
output = strip_bad_tokens(output, stop_strings)
|
| 74 |
+
yield output
|
| 75 |
|
| 76 |
demo = gr.Interface(
|
| 77 |
fn=generate_answer_stream,
|