PengWeixuanSZU commited on
Commit
5e04e65
·
verified ·
1 Parent(s): 32f59ee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -8
app.py CHANGED
@@ -26,6 +26,7 @@ from torchvision import transforms
26
 
27
  import spaces
28
  from huggingface_hub import snapshot_download
 
29
 
30
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
31
 
@@ -116,9 +117,9 @@ def init_pipe():
116
  controlnet_transformer,
117
  )
118
 
119
- pipe.vae.enable_slicing()
120
- pipe.vae.enable_tiling()
121
- pipe.enable_model_cpu_offload()
122
 
123
  return pipe
124
 
@@ -129,10 +130,11 @@ def inference(source_images,
129
  pipe, vae, guidance_scale,
130
  h, w, random_seed)->List[PIL.Image.Image]:
131
  torch.manual_seed(random_seed)
132
-
133
- pipe.vae.to(DEVICE)
134
- pipe.transformer.to(DEVICE)
135
- pipe.controlnet_transformer.to(DEVICE)
 
136
 
137
  source_pixel_values = source_images/127.5 - 1.0
138
  source_pixel_values = source_pixel_values.to(torch.float16).to(DEVICE)
@@ -161,6 +163,7 @@ def inference(source_images,
161
  image_latents = None
162
  latents = source_latents
163
 
 
164
  video = pipe(
165
  prompt = text_prompt,
166
  negative_prompt = negative_prompt,
@@ -169,11 +172,13 @@ def inference(source_images,
169
  height = h,
170
  width = w,
171
  num_frames = f,
172
- num_inference_steps = 20,
173
  interval = 6,
174
  guidance_scale = guidance_scale,
175
  generator = torch.Generator(device=DEVICE).manual_seed(random_seed)
176
  ).frames[0]
 
 
177
 
178
  return video
179
 
 
26
 
27
  import spaces
28
  from huggingface_hub import snapshot_download
29
+ import time
30
 
31
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
32
 
 
117
  controlnet_transformer,
118
  )
119
 
120
+ # pipe.vae.enable_slicing()
121
+ # pipe.vae.enable_tiling()
122
+ # pipe.enable_model_cpu_offload()
123
 
124
  return pipe
125
 
 
130
  pipe, vae, guidance_scale,
131
  h, w, random_seed)->List[PIL.Image.Image]:
132
  torch.manual_seed(random_seed)
133
+
134
+ pipe.to(DEVICE)
135
+ # pipe.vae.to(DEVICE)
136
+ # pipe.transformer.to(DEVICE)
137
+ # pipe.controlnet_transformer.to(DEVICE)
138
 
139
  source_pixel_values = source_images/127.5 - 1.0
140
  source_pixel_values = source_pixel_values.to(torch.float16).to(DEVICE)
 
163
  image_latents = None
164
  latents = source_latents
165
 
166
+ a=time.perf_counter()
167
  video = pipe(
168
  prompt = text_prompt,
169
  negative_prompt = negative_prompt,
 
172
  height = h,
173
  width = w,
174
  num_frames = f,
175
+ num_inference_steps = 30,
176
  interval = 6,
177
  guidance_scale = guidance_scale,
178
  generator = torch.Generator(device=DEVICE).manual_seed(random_seed)
179
  ).frames[0]
180
+ b=time.perf_counter()
181
+ print(f"Denoise 30 steps in {b-a}s")
182
 
183
  return video
184