Spaces:
Runtime error
Runtime error
| import os | |
| import re | |
| import io | |
| import json | |
| from typing import List, Tuple, Union | |
| from pathlib import Path | |
| import gradio as gr | |
| from leptonai import Client | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| LEPTON_API_TOKEN = os.environ.get("LEPTON_API_TOKEN", None) | |
| client = Client("https://yb15a7dy-glider.tin.lepton.run", "glider", LEPTON_API_TOKEN) | |
| PROMPT = """Analyze the following pass criteria carefully and score the text based on the rubric defined below. | |
| To perform this evaluation, you must: | |
| 1. Understand the text tags, pass criteria and rubric thoroughly. | |
| 2. Review the finer details of the text and the rubric. | |
| 3. Compare the tags to be evaluated to the score descriptions in the rubric. | |
| 4. Pay close attention to small details that might impact the final score and form accurate associations between tags and pass criteria. | |
| 5. Write a detailed reasoning justifying your evaluation in a bullet point format. | |
| 6. The reasoning must summarize the overall strengths and weaknesses of the output while quoting exact phrases from the output wherever required. | |
| 7. Output a list of words or phrases that you believe are the most important in determining the score. | |
| 8. Assign a final score based on the scoring rubric. | |
| Data to evaluate: | |
| {user_input} | |
| Pass Criteria: | |
| {pass_criteria} | |
| Rubric: | |
| {rubric} | |
| Your output must in the following format: | |
| <reasoning> | |
| [Detailed reasoning justifying your evaluation in a bullet point format according to the specifics defined above] | |
| </reasoning> | |
| <highlight> | |
| [List of words or phrases that you believe are the most important in determining the score] | |
| </highlight> | |
| <score> | |
| [The final integer score assigned based on the scoring rubric] | |
| </score> | |
| """ | |
| EXAMPLES = [ | |
| { | |
| "emoji": "🌁", | |
| "model_output": "The sky is green.", | |
| "user_input": "What color is the sky?", | |
| "gold_answer": "", | |
| "retrieved_context": "The sky is blue.", | |
| "pass_criteria": "Is the MODEL OUTPUT grounded in the CONTEXT?", | |
| "rubric": "0. The pass criteria is not satisfied and not accurately followed\n1. The pass criteria is satisfied and accurately followed", | |
| } | |
| ] | |
| HEADER = """ | |
| <div style="width: 100%; display: flex; flex-direction: column; gap: 24px; padding-top: 24px"> | |
| <img src="https://postimage.me/images/2024/12/19/ICONGLIDER.md.png" width="325" style="position: absolute; top: 0; right: -24px"> | |
| <div style="display: flex; justify-content: space-between; z-index: 1;"> | |
| <a href="https://www.patronus.ai"> | |
| <img src="https://postimage.me/images/2024/12/19/patronuslogo-white.png" width="250"> | |
| </a> | |
| <div style="display: flex; gap: 12px;"> | |
| <a href="https://huggingface.co/PatronusAI/glider"> | |
| <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange" height="20"> | |
| </a> | |
| <a href="https://github.com/patronus-ai/glider"> | |
| <img src="https://img.shields.io/badge/GitHub-Glider-indigo" height="20"> | |
| </a> | |
| <a href="https://arxiv.org/abs/2412.14140"> | |
| <img src="https://img.shields.io/badge/arXiv-2412.14140-b31b1b.svg" height="20"> | |
| </a> | |
| </div> | |
| </div> | |
| <div> | |
| <h1 style="color: #fff !important">GLIDER: Grading LLM Interactions and Decisions using Explainable Ranking</h1> | |
| <h2 style="color: #fff !important">Patronus GLIDER Demo</h2> | |
| </div> | |
| </div> | |
| <br> | |
| <div style="color: #fff !important; width: 70%"><span style="color: inherit; font-weight: 600">GLIDER</span> is a powerful 3B evaluator LLM that can score any text input and associated context on arbitrary user defined criteria.</div> | |
| <br> | |
| <div style="color: #fff !important; width: 70%;"><span style="color: inherit; font-weight: 600">Getting Started</span>: First, provide a model output (text generated by your model) and user input (text used to prompt your model) and optionally a gold answer (label or gold answer to the prompt) and retrieved context (context used for text generated by your model). Next, provide a pass criteria (description of a passing evaluation). Finally, provide an optional rubric (scoring scales with explanations) and then click submit. The GLIDER Output panel will provide a score and reasoning which is a human readable explanation of the score.</div> | |
| <br> | |
| """ | |
| EXAMPLES_HEADER = """ | |
| <h1 style="color: #fff !important"> | |
| Try it Yourself! | |
| </h1> | |
| """ | |
| css = """ | |
| .example-button { | |
| width: fit-content; | |
| font-size: 1rem; | |
| font-weight: 400 !important; | |
| padding: .5rem 1rem; | |
| text-align: start; | |
| } | |
| .fixed-height-button { | |
| height: fit-content; | |
| word-break: break-all; | |
| font-size: .85rem; | |
| } | |
| """ | |
| theme = gr.themes.Default( | |
| spacing_size="sm", | |
| font=[gr.themes.GoogleFont("Plus Jakarta Sans"), "Arial", "sans-serif"], | |
| primary_hue="indigo", | |
| secondary_hue="purple" | |
| ).set( | |
| background_fill_primary="radial-gradient(circle at 90% 0%, rgba(255,255,255,0.4), #000000 25%)") | |
| def format_string(retrieved_context, user_input, model_output, gold_answer): | |
| parts = [] | |
| if retrieved_context: | |
| parts.append(f"<CONTEXT>\n{retrieved_context}\n</CONTEXT>") | |
| if user_input: | |
| parts.append(f"<USER INPUT>\n{user_input}\n</USER INPUT>") | |
| if model_output: | |
| parts.append(f"<MODEL OUTPUT>\n{model_output}\n</MODEL OUTPUT>") | |
| if gold_answer: | |
| parts.append(f"<GOLD ANSWER>\n{gold_answer}\n</GOLD ANSWER>") | |
| return "\n".join(parts) | |
| def extract_spans(input_string): | |
| # Regex patterns to extract content within the reasoning, highlight, and score tags | |
| reasoning_pattern = r"<reasoning>\s*(.*?)\s*</reasoning>" | |
| highlight_pattern = r"<highlight>\s*(.*?)\s*</highlight>" | |
| score_pattern = r"<score>\s*(\d+)\s*</score(?:\>|)" | |
| # Using re.search to extract the contents based on our defined patterns | |
| reasoning_match = re.search(reasoning_pattern, input_string, re.DOTALL) | |
| highlight_match = re.search(highlight_pattern, input_string) | |
| score_match = re.search(score_pattern, input_string) | |
| # Extracting the matched groups if present | |
| reasoning = reasoning_match.group(1) if reasoning_match else None | |
| highlight = highlight_match.group(1).strip() if highlight_match else None | |
| score = int(score_match.group(1)) if score_match else None | |
| # Return a dictionary with the extracted content | |
| return score, reasoning, highlight | |
| def model_call(model_output, user_input, gold_answer, retrieved_context, pass_criteria, rubric): | |
| if model_output == "" or user_input == "" or pass_criteria == "": | |
| return "", "", "" | |
| combined_user_input = format_string(retrieved_context, user_input, model_output, gold_answer) | |
| NEW_PROMPT_FORMAT = PROMPT.format(user_input=combined_user_input, pass_criteria=pass_criteria, rubric=rubric) | |
| response = client.api.v1.chat.completions( | |
| model="glider", | |
| messages=[{"role": "user", "content": NEW_PROMPT_FORMAT}], | |
| temperature=0, | |
| top_p=0.999, | |
| max_tokens=2048, | |
| stream=False, | |
| ) | |
| score, reasoning, highlight_spans = extract_spans(response["choices"][0]["message"]["content"]) | |
| return score, reasoning, highlight_spans | |
| def select_template(template): | |
| return template["model_output"], template["user_input"], template["gold_answer"], template["retrieved_context"], template["pass_criteria"], template["rubric"] | |
| with gr.Blocks(css=css, theme=theme) as demo: | |
| gr.Markdown(HEADER) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=1): | |
| gr.Markdown("<div style='color: #fff !important; font-weight: 600'>Your Inputs</div>") | |
| model_output = gr.Textbox(label="MODEL OUTPUT (required)") | |
| user_input = gr.Textbox(label="USER INPUT (required)") | |
| gold_answer = gr.Textbox(label="GOLD ANSWER") | |
| retrieved_context = gr.Textbox(label="RETRIEVED CONTEXT") | |
| pass_criteria = gr.Textbox(label="Pass Criteria (required)") | |
| rubric = gr.Textbox(label="Rubric") | |
| with gr.Row(): | |
| clear_btn = gr.ClearButton([model_output, user_input, gold_answer, retrieved_context, pass_criteria, rubric]) | |
| submit_button = gr.Button("Submit", variant="primary") | |
| with gr.Column(scale=1): | |
| gr.Markdown("<div style='color: #fff !important; font-weight: 600'>GLIDER Output</div>") | |
| score = gr.Textbox(label="Score") | |
| reasoning = gr.Textbox(label="Reasoning") | |
| highlights = gr.Textbox(label="Highlights") | |
| gr.Markdown(" ") | |
| gr.Markdown(EXAMPLES_HEADER) | |
| with gr.Row(): | |
| with gr.Column(): | |
| for _, example in enumerate(EXAMPLES): | |
| template_btn = gr.Button(f"{example['emoji']} {example['model_output']}", elem_classes="example-button") | |
| template_btn.click( | |
| fn=select_template, | |
| inputs=[gr.State(example)], | |
| outputs=[model_output, user_input, gold_answer, retrieved_context, pass_criteria, rubric] | |
| ) | |
| submit_button.click(fn=model_call, inputs=[model_output, user_input, gold_answer, retrieved_context, pass_criteria, rubric], outputs=[score, reasoning, highlights]) | |
| demo.launch() | |