Spaces:
Running
Running
Upload 3 files
Browse files- lora_clm_accelerate_big_model_inference.ipynb +481 -0
- lora_clm_with_additional_tokens.ipynb +1012 -0
- prompt_tuning_clm.ipynb +1229 -0
lora_clm_accelerate_big_model_inference.ipynb
ADDED
|
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "71fbfca2",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"name": "stdout",
|
| 11 |
+
"output_type": "stream",
|
| 12 |
+
"text": [
|
| 13 |
+
"\n",
|
| 14 |
+
"===================================BUG REPORT===================================\n",
|
| 15 |
+
"Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
| 16 |
+
"For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link\n",
|
| 17 |
+
"================================================================================\n",
|
| 18 |
+
"CUDA SETUP: CUDA runtime path found: /home/sourab/miniconda3/envs/ml/lib/libcudart.so\n",
|
| 19 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 7.5\n",
|
| 20 |
+
"CUDA SETUP: Detected CUDA version 117\n",
|
| 21 |
+
"CUDA SETUP: Loading binary /home/sourab/miniconda3/envs/ml/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda117.so...\n"
|
| 22 |
+
]
|
| 23 |
+
}
|
| 24 |
+
],
|
| 25 |
+
"source": [
|
| 26 |
+
"from transformers import AutoModelForCausalLM\n",
|
| 27 |
+
"from peft import PeftModel, PeftConfig\n",
|
| 28 |
+
"import torch\n",
|
| 29 |
+
"from datasets import load_dataset\n",
|
| 30 |
+
"import os\n",
|
| 31 |
+
"from transformers import AutoTokenizer\n",
|
| 32 |
+
"from torch.utils.data import DataLoader\n",
|
| 33 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
| 34 |
+
"from tqdm import tqdm\n",
|
| 35 |
+
"from datasets import load_dataset\n",
|
| 36 |
+
"\n",
|
| 37 |
+
"device = \"cuda\"\n",
|
| 38 |
+
"model_name_or_path = \"bigscience/bloomz-7b1\"\n",
|
| 39 |
+
"tokenizer_name_or_path = \"bigscience/bloomz-7b1\"\n",
|
| 40 |
+
"dataset_name = \"twitter_complaints\"\n",
|
| 41 |
+
"text_column = \"Tweet text\"\n",
|
| 42 |
+
"label_column = \"text_label\"\n",
|
| 43 |
+
"max_length = 64\n",
|
| 44 |
+
"lr = 1e-3\n",
|
| 45 |
+
"num_epochs = 50\n",
|
| 46 |
+
"batch_size = 8"
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "code",
|
| 51 |
+
"execution_count": null,
|
| 52 |
+
"id": "e1a3648b",
|
| 53 |
+
"metadata": {},
|
| 54 |
+
"outputs": [],
|
| 55 |
+
"source": [
|
| 56 |
+
"from datasets import load_dataset\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"dataset = load_dataset(\"ought/raft\", dataset_name)\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"classes = [k.replace(\"_\", \" \") for k in dataset[\"train\"].features[\"Label\"].names]\n",
|
| 61 |
+
"print(classes)\n",
|
| 62 |
+
"dataset = dataset.map(\n",
|
| 63 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"Label\"]]},\n",
|
| 64 |
+
" batched=True,\n",
|
| 65 |
+
" num_proc=1,\n",
|
| 66 |
+
")\n",
|
| 67 |
+
"print(dataset)\n",
|
| 68 |
+
"dataset[\"train\"][0]"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "code",
|
| 73 |
+
"execution_count": 3,
|
| 74 |
+
"id": "fe12d4d3",
|
| 75 |
+
"metadata": {},
|
| 76 |
+
"outputs": [
|
| 77 |
+
{
|
| 78 |
+
"name": "stdout",
|
| 79 |
+
"output_type": "stream",
|
| 80 |
+
"text": [
|
| 81 |
+
"3\n"
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"data": {
|
| 86 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 87 |
+
"model_id": "10cabeec92ab428f9a660ebaecbaf865",
|
| 88 |
+
"version_major": 2,
|
| 89 |
+
"version_minor": 0
|
| 90 |
+
},
|
| 91 |
+
"text/plain": [
|
| 92 |
+
"Running tokenizer on dataset: 0%| | 0/1 [00:00<?, ?ba/s]"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
"metadata": {},
|
| 96 |
+
"output_type": "display_data"
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"data": {
|
| 100 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 101 |
+
"model_id": "8a344e989ab34c71b230acee68b477e8",
|
| 102 |
+
"version_major": 2,
|
| 103 |
+
"version_minor": 0
|
| 104 |
+
},
|
| 105 |
+
"text/plain": [
|
| 106 |
+
"Running tokenizer on dataset: 0%| | 0/4 [00:00<?, ?ba/s]"
|
| 107 |
+
]
|
| 108 |
+
},
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"output_type": "display_data"
|
| 111 |
+
}
|
| 112 |
+
],
|
| 113 |
+
"source": [
|
| 114 |
+
"# data preprocessing\n",
|
| 115 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
| 116 |
+
"if tokenizer.pad_token_id is None:\n",
|
| 117 |
+
" tokenizer.pad_token_id = tokenizer.eos_token_id\n",
|
| 118 |
+
"target_max_length = max([len(tokenizer(class_label)[\"input_ids\"]) for class_label in classes])\n",
|
| 119 |
+
"print(target_max_length)\n",
|
| 120 |
+
"\n",
|
| 121 |
+
"\n",
|
| 122 |
+
"def preprocess_function(examples):\n",
|
| 123 |
+
" batch_size = len(examples[text_column])\n",
|
| 124 |
+
" inputs = [f\"{text_column} : {x} Label : \" for x in examples[text_column]]\n",
|
| 125 |
+
" targets = [str(x) for x in examples[label_column]]\n",
|
| 126 |
+
" model_inputs = tokenizer(inputs)\n",
|
| 127 |
+
" labels = tokenizer(targets, add_special_tokens=False) # don't add bos token because we concatenate with inputs\n",
|
| 128 |
+
" for i in range(batch_size):\n",
|
| 129 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
| 130 |
+
" label_input_ids = labels[\"input_ids\"][i] + [tokenizer.eos_token_id]\n",
|
| 131 |
+
" # print(i, sample_input_ids, label_input_ids)\n",
|
| 132 |
+
" model_inputs[\"input_ids\"][i] = sample_input_ids + label_input_ids\n",
|
| 133 |
+
" labels[\"input_ids\"][i] = [-100] * len(sample_input_ids) + label_input_ids\n",
|
| 134 |
+
" model_inputs[\"attention_mask\"][i] = [1] * len(model_inputs[\"input_ids\"][i])\n",
|
| 135 |
+
" # print(model_inputs)\n",
|
| 136 |
+
" for i in range(batch_size):\n",
|
| 137 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
| 138 |
+
" label_input_ids = labels[\"input_ids\"][i]\n",
|
| 139 |
+
" model_inputs[\"input_ids\"][i] = [tokenizer.pad_token_id] * (\n",
|
| 140 |
+
" max_length - len(sample_input_ids)\n",
|
| 141 |
+
" ) + sample_input_ids\n",
|
| 142 |
+
" model_inputs[\"attention_mask\"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[\n",
|
| 143 |
+
" \"attention_mask\"\n",
|
| 144 |
+
" ][i]\n",
|
| 145 |
+
" labels[\"input_ids\"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids\n",
|
| 146 |
+
" model_inputs[\"input_ids\"][i] = torch.tensor(model_inputs[\"input_ids\"][i][:max_length])\n",
|
| 147 |
+
" model_inputs[\"attention_mask\"][i] = torch.tensor(model_inputs[\"attention_mask\"][i][:max_length])\n",
|
| 148 |
+
" labels[\"input_ids\"][i] = torch.tensor(labels[\"input_ids\"][i][:max_length])\n",
|
| 149 |
+
" model_inputs[\"labels\"] = labels[\"input_ids\"]\n",
|
| 150 |
+
" return model_inputs\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"processed_datasets = dataset.map(\n",
|
| 154 |
+
" preprocess_function,\n",
|
| 155 |
+
" batched=True,\n",
|
| 156 |
+
" num_proc=1,\n",
|
| 157 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 158 |
+
" load_from_cache_file=False,\n",
|
| 159 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 160 |
+
")\n",
|
| 161 |
+
"\n",
|
| 162 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
| 163 |
+
"\n",
|
| 164 |
+
"\n",
|
| 165 |
+
"train_dataloader = DataLoader(\n",
|
| 166 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
| 167 |
+
")"
|
| 168 |
+
]
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"cell_type": "code",
|
| 172 |
+
"execution_count": null,
|
| 173 |
+
"id": "2795b9d0",
|
| 174 |
+
"metadata": {},
|
| 175 |
+
"outputs": [],
|
| 176 |
+
"source": [
|
| 177 |
+
"def test_preprocess_function(examples):\n",
|
| 178 |
+
" batch_size = len(examples[text_column])\n",
|
| 179 |
+
" inputs = [f\"{text_column} : {x} Label : \" for x in examples[text_column]]\n",
|
| 180 |
+
" model_inputs = tokenizer(inputs)\n",
|
| 181 |
+
" # print(model_inputs)\n",
|
| 182 |
+
" for i in range(batch_size):\n",
|
| 183 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
| 184 |
+
" model_inputs[\"input_ids\"][i] = [tokenizer.pad_token_id] * (\n",
|
| 185 |
+
" max_length - len(sample_input_ids)\n",
|
| 186 |
+
" ) + sample_input_ids\n",
|
| 187 |
+
" model_inputs[\"attention_mask\"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[\n",
|
| 188 |
+
" \"attention_mask\"\n",
|
| 189 |
+
" ][i]\n",
|
| 190 |
+
" model_inputs[\"input_ids\"][i] = torch.tensor(model_inputs[\"input_ids\"][i][:max_length])\n",
|
| 191 |
+
" model_inputs[\"attention_mask\"][i] = torch.tensor(model_inputs[\"attention_mask\"][i][:max_length])\n",
|
| 192 |
+
" return model_inputs\n",
|
| 193 |
+
"\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"processed_datasets = dataset.map(\n",
|
| 196 |
+
" test_preprocess_function,\n",
|
| 197 |
+
" batched=True,\n",
|
| 198 |
+
" num_proc=1,\n",
|
| 199 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 200 |
+
" load_from_cache_file=False,\n",
|
| 201 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 202 |
+
")\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"eval_dataset = processed_datasets[\"train\"]\n",
|
| 205 |
+
"test_dataset = processed_datasets[\"test\"]\n",
|
| 206 |
+
"\n",
|
| 207 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)\n",
|
| 208 |
+
"test_dataloader = DataLoader(test_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)\n",
|
| 209 |
+
"print(next(iter(eval_dataloader)))\n",
|
| 210 |
+
"print(next(iter(test_dataloader)))"
|
| 211 |
+
]
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "markdown",
|
| 215 |
+
"id": "42b14a11",
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"source": [
|
| 218 |
+
"You can load model from hub or local\n",
|
| 219 |
+
"\n",
|
| 220 |
+
"- Load model from Hugging Face Hub, you can change to your own model id\n",
|
| 221 |
+
"```python\n",
|
| 222 |
+
"peft_model_id = \"username/twitter_complaints_bigscience_bloomz-7b1_LORA_CAUSAL_LM\"\n",
|
| 223 |
+
"```\n",
|
| 224 |
+
"- Or load model form local\n",
|
| 225 |
+
"```python\n",
|
| 226 |
+
"peft_model_id = \"twitter_complaints_bigscience_bloomz-7b1_LORA_CAUSAL_LM\"\n",
|
| 227 |
+
"```"
|
| 228 |
+
]
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"cell_type": "code",
|
| 232 |
+
"execution_count": 5,
|
| 233 |
+
"id": "9caac014",
|
| 234 |
+
"metadata": {},
|
| 235 |
+
"outputs": [
|
| 236 |
+
{
|
| 237 |
+
"name": "stderr",
|
| 238 |
+
"output_type": "stream",
|
| 239 |
+
"text": [
|
| 240 |
+
"/home/sourab/pet/src/peft/tuners/lora.py:143: UserWarning: fan_in_fan_out is set to True but the target module is not a Conv1D. Setting fan_in_fan_out to False.\n",
|
| 241 |
+
" warnings.warn(\n"
|
| 242 |
+
]
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"data": {
|
| 246 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 247 |
+
"model_id": "bc38030106a14173a1363eb1ee388eda",
|
| 248 |
+
"version_major": 2,
|
| 249 |
+
"version_minor": 0
|
| 250 |
+
},
|
| 251 |
+
"text/plain": [
|
| 252 |
+
"Downloading: 0%| | 0.00/15.8M [00:00<?, ?B/s]"
|
| 253 |
+
]
|
| 254 |
+
},
|
| 255 |
+
"metadata": {},
|
| 256 |
+
"output_type": "display_data"
|
| 257 |
+
}
|
| 258 |
+
],
|
| 259 |
+
"source": [
|
| 260 |
+
"from peft import PeftModel, PeftConfig\n",
|
| 261 |
+
"\n",
|
| 262 |
+
"max_memory = {0: \"1GIB\", 1: \"1GIB\", 2: \"2GIB\", 3: \"10GIB\", \"cpu\": \"30GB\"}\n",
|
| 263 |
+
"peft_model_id = \"smangrul/twitter_complaints_bigscience_bloomz-7b1_LORA_CAUSAL_LM\"\n",
|
| 264 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
| 265 |
+
"model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map=\"auto\", max_memory=max_memory)\n",
|
| 266 |
+
"model = PeftModel.from_pretrained(model, peft_model_id, device_map=\"auto\", max_memory=max_memory)"
|
| 267 |
+
]
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"cell_type": "code",
|
| 271 |
+
"execution_count": 35,
|
| 272 |
+
"id": "6fac10b5",
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"outputs": [],
|
| 275 |
+
"source": [
|
| 276 |
+
"# model"
|
| 277 |
+
]
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"cell_type": "code",
|
| 281 |
+
"execution_count": 7,
|
| 282 |
+
"id": "2a08ee6d",
|
| 283 |
+
"metadata": {},
|
| 284 |
+
"outputs": [
|
| 285 |
+
{
|
| 286 |
+
"data": {
|
| 287 |
+
"text/plain": [
|
| 288 |
+
"{'base_model.model.transformer.word_embeddings': 3,\n",
|
| 289 |
+
" 'base_model.model.lm_head': 3,\n",
|
| 290 |
+
" 'base_model.model.transformer.word_embeddings_layernorm': 3,\n",
|
| 291 |
+
" 'base_model.model.transformer.h.0': 3,\n",
|
| 292 |
+
" 'base_model.model.transformer.h.1': 3,\n",
|
| 293 |
+
" 'base_model.model.transformer.h.2': 3,\n",
|
| 294 |
+
" 'base_model.model.transformer.h.3': 3,\n",
|
| 295 |
+
" 'base_model.model.transformer.h.4': 3,\n",
|
| 296 |
+
" 'base_model.model.transformer.h.5': 3,\n",
|
| 297 |
+
" 'base_model.model.transformer.h.6': 3,\n",
|
| 298 |
+
" 'base_model.model.transformer.h.7': 3,\n",
|
| 299 |
+
" 'base_model.model.transformer.h.8': 'cpu',\n",
|
| 300 |
+
" 'base_model.model.transformer.h.9': 'cpu',\n",
|
| 301 |
+
" 'base_model.model.transformer.h.10': 'cpu',\n",
|
| 302 |
+
" 'base_model.model.transformer.h.11': 'cpu',\n",
|
| 303 |
+
" 'base_model.model.transformer.h.12': 'cpu',\n",
|
| 304 |
+
" 'base_model.model.transformer.h.13': 'cpu',\n",
|
| 305 |
+
" 'base_model.model.transformer.h.14': 'cpu',\n",
|
| 306 |
+
" 'base_model.model.transformer.h.15': 'cpu',\n",
|
| 307 |
+
" 'base_model.model.transformer.h.16': 'cpu',\n",
|
| 308 |
+
" 'base_model.model.transformer.h.17': 'cpu',\n",
|
| 309 |
+
" 'base_model.model.transformer.h.18': 'cpu',\n",
|
| 310 |
+
" 'base_model.model.transformer.h.19': 'cpu',\n",
|
| 311 |
+
" 'base_model.model.transformer.h.20': 'cpu',\n",
|
| 312 |
+
" 'base_model.model.transformer.h.21': 'cpu',\n",
|
| 313 |
+
" 'base_model.model.transformer.h.22': 'cpu',\n",
|
| 314 |
+
" 'base_model.model.transformer.h.23': 'cpu',\n",
|
| 315 |
+
" 'base_model.model.transformer.h.24': 'cpu',\n",
|
| 316 |
+
" 'base_model.model.transformer.h.25': 'cpu',\n",
|
| 317 |
+
" 'base_model.model.transformer.h.26': 'cpu',\n",
|
| 318 |
+
" 'base_model.model.transformer.h.27': 'cpu',\n",
|
| 319 |
+
" 'base_model.model.transformer.h.28': 'cpu',\n",
|
| 320 |
+
" 'base_model.model.transformer.h.29': 'cpu',\n",
|
| 321 |
+
" 'base_model.model.transformer.ln_f': 'cpu'}"
|
| 322 |
+
]
|
| 323 |
+
},
|
| 324 |
+
"execution_count": 7,
|
| 325 |
+
"metadata": {},
|
| 326 |
+
"output_type": "execute_result"
|
| 327 |
+
}
|
| 328 |
+
],
|
| 329 |
+
"source": [
|
| 330 |
+
"model.hf_device_map"
|
| 331 |
+
]
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"cell_type": "code",
|
| 335 |
+
"execution_count": 34,
|
| 336 |
+
"id": "b33be5e6",
|
| 337 |
+
"metadata": {},
|
| 338 |
+
"outputs": [
|
| 339 |
+
{
|
| 340 |
+
"name": "stdout",
|
| 341 |
+
"output_type": "stream",
|
| 342 |
+
"text": [
|
| 343 |
+
"@HondaCustSvc Your customer service has been horrible during the recall process. I will never purchase a Honda again.\n",
|
| 344 |
+
"{'input_ids': tensor([[227985, 5484, 915, 2566, 216744, 38, 1316, 54, 42705,\n",
|
| 345 |
+
" 32465, 52166, 9440, 1809, 3784, 88483, 9411, 368, 84342,\n",
|
| 346 |
+
" 4451, 17, 473, 2152, 11705, 82406, 267, 51591, 5734,\n",
|
| 347 |
+
" 17, 77658, 915, 210]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
| 348 |
+
" 1, 1, 1, 1, 1, 1, 1]])}\n",
|
| 349 |
+
"tensor([[227985, 5484, 915, 2566, 216744, 38, 1316, 54, 42705,\n",
|
| 350 |
+
" 32465, 52166, 9440, 1809, 3784, 88483, 9411, 368, 84342,\n",
|
| 351 |
+
" 4451, 17, 473, 2152, 11705, 82406, 267, 51591, 5734,\n",
|
| 352 |
+
" 17, 77658, 915, 210, 16449, 5952, 3, 3, 3,\n",
|
| 353 |
+
" 3, 3, 3, 3, 3]])\n",
|
| 354 |
+
"['Tweet text : @HondaCustSvc Your customer service has been horrible during the recall process. I will never purchase a Honda again. Label : complaint']\n"
|
| 355 |
+
]
|
| 356 |
+
}
|
| 357 |
+
],
|
| 358 |
+
"source": [
|
| 359 |
+
"model.eval()\n",
|
| 360 |
+
"i = 89\n",
|
| 361 |
+
"inputs = tokenizer(f'{text_column} : {dataset[\"test\"][i][\"Tweet text\"]} Label : ', return_tensors=\"pt\")\n",
|
| 362 |
+
"print(dataset[\"test\"][i][\"Tweet text\"])\n",
|
| 363 |
+
"print(inputs)\n",
|
| 364 |
+
"\n",
|
| 365 |
+
"with torch.no_grad():\n",
|
| 366 |
+
" outputs = model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=10)\n",
|
| 367 |
+
" print(outputs)\n",
|
| 368 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
| 369 |
+
]
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"cell_type": "code",
|
| 373 |
+
"execution_count": 9,
|
| 374 |
+
"id": "b6d6cd5b",
|
| 375 |
+
"metadata": {},
|
| 376 |
+
"outputs": [
|
| 377 |
+
{
|
| 378 |
+
"name": "stderr",
|
| 379 |
+
"output_type": "stream",
|
| 380 |
+
"text": [
|
| 381 |
+
"100%|███████████████████████████████████████████████████████████████████████████���████████████████| 7/7 [01:42<00:00, 14.70s/it]\n"
|
| 382 |
+
]
|
| 383 |
+
}
|
| 384 |
+
],
|
| 385 |
+
"source": [
|
| 386 |
+
"model.eval()\n",
|
| 387 |
+
"eval_preds = []\n",
|
| 388 |
+
"for _, batch in enumerate(tqdm(eval_dataloader)):\n",
|
| 389 |
+
" batch = {k: v for k, v in batch.items() if k != \"labels\"}\n",
|
| 390 |
+
" with torch.no_grad():\n",
|
| 391 |
+
" outputs = model.generate(**batch, max_new_tokens=10)\n",
|
| 392 |
+
" preds = outputs[:, max_length:].detach().cpu().numpy()\n",
|
| 393 |
+
" eval_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True))"
|
| 394 |
+
]
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"cell_type": "code",
|
| 398 |
+
"execution_count": 11,
|
| 399 |
+
"id": "61264abe",
|
| 400 |
+
"metadata": {},
|
| 401 |
+
"outputs": [
|
| 402 |
+
{
|
| 403 |
+
"name": "stdout",
|
| 404 |
+
"output_type": "stream",
|
| 405 |
+
"text": [
|
| 406 |
+
"accuracy=100.0\n",
|
| 407 |
+
"eval_preds[:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint']\n",
|
| 408 |
+
"dataset['train'][label_column][:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint']\n"
|
| 409 |
+
]
|
| 410 |
+
}
|
| 411 |
+
],
|
| 412 |
+
"source": [
|
| 413 |
+
"correct = 0\n",
|
| 414 |
+
"total = 0\n",
|
| 415 |
+
"for pred, true in zip(eval_preds, dataset[\"train\"][label_column]):\n",
|
| 416 |
+
" if pred.strip() == true.strip():\n",
|
| 417 |
+
" correct += 1\n",
|
| 418 |
+
" total += 1\n",
|
| 419 |
+
"accuracy = correct / total * 100\n",
|
| 420 |
+
"print(f\"{accuracy=}\")\n",
|
| 421 |
+
"print(f\"{eval_preds[:10]=}\")\n",
|
| 422 |
+
"print(f\"{dataset['train'][label_column][:10]=}\")"
|
| 423 |
+
]
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"cell_type": "code",
|
| 427 |
+
"execution_count": null,
|
| 428 |
+
"id": "a70802a3",
|
| 429 |
+
"metadata": {},
|
| 430 |
+
"outputs": [],
|
| 431 |
+
"source": [
|
| 432 |
+
"model.eval()\n",
|
| 433 |
+
"test_preds = []\n",
|
| 434 |
+
"\n",
|
| 435 |
+
"for _, batch in enumerate(tqdm(test_dataloader)):\n",
|
| 436 |
+
" batch = {k: v for k, v in batch.items() if k != \"labels\"}\n",
|
| 437 |
+
" with torch.no_grad():\n",
|
| 438 |
+
" outputs = model.generate(**batch, max_new_tokens=10)\n",
|
| 439 |
+
" preds = outputs[:, max_length:].detach().cpu().numpy()\n",
|
| 440 |
+
" test_preds.extend(tokenizer.batch_decode(preds, skip_special_tokens=True))\n",
|
| 441 |
+
" if len(test_preds) > 100:\n",
|
| 442 |
+
" break\n",
|
| 443 |
+
"test_preds"
|
| 444 |
+
]
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"cell_type": "code",
|
| 448 |
+
"execution_count": null,
|
| 449 |
+
"id": "e1c4ad9c",
|
| 450 |
+
"metadata": {},
|
| 451 |
+
"outputs": [],
|
| 452 |
+
"source": []
|
| 453 |
+
}
|
| 454 |
+
],
|
| 455 |
+
"metadata": {
|
| 456 |
+
"kernelspec": {
|
| 457 |
+
"display_name": "Python 3 (ipykernel)",
|
| 458 |
+
"language": "python",
|
| 459 |
+
"name": "python3"
|
| 460 |
+
},
|
| 461 |
+
"language_info": {
|
| 462 |
+
"codemirror_mode": {
|
| 463 |
+
"name": "ipython",
|
| 464 |
+
"version": 3
|
| 465 |
+
},
|
| 466 |
+
"file_extension": ".py",
|
| 467 |
+
"mimetype": "text/x-python",
|
| 468 |
+
"name": "python",
|
| 469 |
+
"nbconvert_exporter": "python",
|
| 470 |
+
"pygments_lexer": "ipython3",
|
| 471 |
+
"version": "3.10.4"
|
| 472 |
+
},
|
| 473 |
+
"vscode": {
|
| 474 |
+
"interpreter": {
|
| 475 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
| 476 |
+
}
|
| 477 |
+
}
|
| 478 |
+
},
|
| 479 |
+
"nbformat": 4,
|
| 480 |
+
"nbformat_minor": 5
|
| 481 |
+
}
|
lora_clm_with_additional_tokens.ipynb
ADDED
|
@@ -0,0 +1,1012 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "5f239612-620e-4430-8685-9fdc6b179b41",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Training PEFT models with new tokens being added to the embedding layers and tokenizer\n",
|
| 9 |
+
"\n",
|
| 10 |
+
"In this example, we will learn how to train a LoRA model when adding new tokens to the tokenizer and model. \n",
|
| 11 |
+
"This is a common usecase when doing the following:\n",
|
| 12 |
+
"1. Instruction finetuning with new tokens beind added such as `<|user|>`, `<|assistant|>`, `<|system|>`, `</s>`, `<s>` to properly format the conversations\n",
|
| 13 |
+
"2. Finetuning on a specific language wherein language spoecific tokens are added, e.g., korean tokens being added to vocabulary for finetuning LLM on Korean datasets.\n",
|
| 14 |
+
"3. Instruction finetuning to return outputs in certain format to enable agent behaviour new tokens such as `<|FUNCTIONS|>`, `<|BROWSE|>`, `<|TEXT2IMAGE|>`, `<|ASR|>`, `<|TTS|>`, `<|GENERATECODE|>`, `<|RAG|>`.\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"In such cases, you add the Embedding modules to the LORA `target_modules`. PEFT will take care of saving the embedding layers with the new added tokens along with the adapter weights that were trained on the specific initialization of the embeddings weights of the added tokens."
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "markdown",
|
| 21 |
+
"id": "b27c55e8-edaa-4059-90bc-d6096d596902",
|
| 22 |
+
"metadata": {},
|
| 23 |
+
"source": [
|
| 24 |
+
"Let's import the necessary libraries"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": 1,
|
| 30 |
+
"id": "6f864c90",
|
| 31 |
+
"metadata": {},
|
| 32 |
+
"outputs": [],
|
| 33 |
+
"source": [
|
| 34 |
+
"import os\n",
|
| 35 |
+
"\n",
|
| 36 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"3\"\n",
|
| 37 |
+
"os.environ[\"WANDB_PROJECT\"] = \"PeftExamples\"\n",
|
| 38 |
+
"import transformers\n",
|
| 39 |
+
"from peft import (\n",
|
| 40 |
+
" LoraConfig,\n",
|
| 41 |
+
" PeftConfig,\n",
|
| 42 |
+
" PeftModel,\n",
|
| 43 |
+
" get_peft_model,\n",
|
| 44 |
+
" prepare_model_for_int8_training,\n",
|
| 45 |
+
")\n",
|
| 46 |
+
"from transformers import (\n",
|
| 47 |
+
" AutoModelForCausalLM,\n",
|
| 48 |
+
" AutoTokenizer,\n",
|
| 49 |
+
" HfArgumentParser,\n",
|
| 50 |
+
" TrainingArguments,\n",
|
| 51 |
+
" Trainer,\n",
|
| 52 |
+
" default_data_collator,\n",
|
| 53 |
+
")\n",
|
| 54 |
+
"import torch\n",
|
| 55 |
+
"from dataclasses import dataclass, field\n",
|
| 56 |
+
"from typing import Optional\n",
|
| 57 |
+
"from dataclass_csv import DataclassReader\n",
|
| 58 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"from enum import Enum"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"cell_type": "markdown",
|
| 65 |
+
"id": "74950a3f-bb63-4ce5-9e2b-1b83f92b13a2",
|
| 66 |
+
"metadata": {},
|
| 67 |
+
"source": [
|
| 68 |
+
"## Prepare Model and Tokenizer"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "markdown",
|
| 73 |
+
"id": "76763f5e-64b2-409b-8845-ae5589f8a4e0",
|
| 74 |
+
"metadata": {},
|
| 75 |
+
"source": [
|
| 76 |
+
"Now, we will be adding 27 new tokens as well as replace the existing pad, bos and eos tokens of the model."
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"cell_type": "code",
|
| 81 |
+
"execution_count": 2,
|
| 82 |
+
"id": "fd0498ea-547e-418d-bf13-c9abafdd5476",
|
| 83 |
+
"metadata": {},
|
| 84 |
+
"outputs": [],
|
| 85 |
+
"source": [
|
| 86 |
+
"class SpecialTokens(str, Enum):\n",
|
| 87 |
+
" begin_target = \"<|begintarget|>\"\n",
|
| 88 |
+
" end_target = \"<|endtarget|>\"\n",
|
| 89 |
+
" begin_context = \"<|begincontext|>\"\n",
|
| 90 |
+
" end_context = \"<|endcontext|>\"\n",
|
| 91 |
+
" system = \"<|system|>\"\n",
|
| 92 |
+
" user = \"<|user|>\"\n",
|
| 93 |
+
" begin_last_user_utterance = \"<|beginlastuserutterance|>\"\n",
|
| 94 |
+
" end_last_user_utterance = \"<|endlastuserutterance|>\"\n",
|
| 95 |
+
" begin_dsts = \"<|begindsts|>\"\n",
|
| 96 |
+
" end_dsts = \"<|enddsts|>\"\n",
|
| 97 |
+
" begin_dst = \"<|begindst|>\"\n",
|
| 98 |
+
" end_dst = \"<|enddst|>\"\n",
|
| 99 |
+
" begin_belief = \"<|beginbelief|>\"\n",
|
| 100 |
+
" end_belief = \"<|endbelief|>\"\n",
|
| 101 |
+
" begin_response = \"<|beginresponse|>\"\n",
|
| 102 |
+
" end_response = \"<|endresponse|>\"\n",
|
| 103 |
+
" begin_action = \"<|beginaction|>\"\n",
|
| 104 |
+
" end_action = \"<|endaction|>\"\n",
|
| 105 |
+
" begin_user_action = \"<|beginuseraction|>\"\n",
|
| 106 |
+
" end_user_action = \"<|enduseraction|>\"\n",
|
| 107 |
+
" sys_actions = \"<|sysactions|>\"\n",
|
| 108 |
+
" begin_intent = \"<|beginintent|>\"\n",
|
| 109 |
+
" end_intent = \"<|endintent|>\"\n",
|
| 110 |
+
" begin_requested_slots = \"<|beginrequestedslots|>\"\n",
|
| 111 |
+
" end_requested_slots = \"<|endrequestedslots|>\"\n",
|
| 112 |
+
" pad_token = \"<|pad|>\"\n",
|
| 113 |
+
" bos_token = \"<|startoftext|>\"\n",
|
| 114 |
+
"\n",
|
| 115 |
+
" @classmethod\n",
|
| 116 |
+
" def list(cls):\n",
|
| 117 |
+
" return [c.value for c in cls]"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "markdown",
|
| 122 |
+
"id": "ae4a4255-5f13-4eef-a024-4f1de0f2173b",
|
| 123 |
+
"metadata": {},
|
| 124 |
+
"source": [
|
| 125 |
+
"We will be finetuning Mistral-7B model. Let's load the tokenizer and add the special tokens followed by loading the base model and resizzing the embedding layers to accomodate the newly added tokens."
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"cell_type": "code",
|
| 130 |
+
"execution_count": 3,
|
| 131 |
+
"id": "f0eedef9",
|
| 132 |
+
"metadata": {},
|
| 133 |
+
"outputs": [
|
| 134 |
+
{
|
| 135 |
+
"data": {
|
| 136 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 137 |
+
"model_id": "91c67b6377fc4dd7977bf544de784d51",
|
| 138 |
+
"version_major": 2,
|
| 139 |
+
"version_minor": 0
|
| 140 |
+
},
|
| 141 |
+
"text/plain": [
|
| 142 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
| 143 |
+
]
|
| 144 |
+
},
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"output_type": "display_data"
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"data": {
|
| 150 |
+
"text/plain": [
|
| 151 |
+
"Embedding(32027, 4096)"
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
"execution_count": 3,
|
| 155 |
+
"metadata": {},
|
| 156 |
+
"output_type": "execute_result"
|
| 157 |
+
}
|
| 158 |
+
],
|
| 159 |
+
"source": [
|
| 160 |
+
"model_name = \"mistralai/Mistral-7B-v0.1\"\n",
|
| 161 |
+
"tokenizer = AutoTokenizer.from_pretrained(\n",
|
| 162 |
+
" model_name,\n",
|
| 163 |
+
" pad_token=SpecialTokens.pad_token.value,\n",
|
| 164 |
+
" bos_token=SpecialTokens.bos_token.value,\n",
|
| 165 |
+
" eos_token=SpecialTokens.end_target.value,\n",
|
| 166 |
+
" additional_special_tokens=SpecialTokens.list(),\n",
|
| 167 |
+
")\n",
|
| 168 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
| 169 |
+
" model_name,\n",
|
| 170 |
+
" low_cpu_mem_usage=True\n",
|
| 171 |
+
" # use_flash_attention_2=True, # leading to an error\n",
|
| 172 |
+
")\n",
|
| 173 |
+
"model.resize_token_embeddings(len(tokenizer))"
|
| 174 |
+
]
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"cell_type": "markdown",
|
| 178 |
+
"id": "88439ed6-9974-4918-80df-ec78b05b4185",
|
| 179 |
+
"metadata": {},
|
| 180 |
+
"source": [
|
| 181 |
+
"## Apply LoRA"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "code",
|
| 186 |
+
"execution_count": 4,
|
| 187 |
+
"id": "80967087",
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"outputs": [
|
| 190 |
+
{
|
| 191 |
+
"name": "stdout",
|
| 192 |
+
"output_type": "stream",
|
| 193 |
+
"text": [
|
| 194 |
+
"trainable params: 31,886,720 || all params: 7,273,840,000 || trainable%: 0.43837532857472805\n",
|
| 195 |
+
"None\n",
|
| 196 |
+
"PeftModel(\n",
|
| 197 |
+
" (base_model): LoraModel(\n",
|
| 198 |
+
" (model): MistralForCausalLM(\n",
|
| 199 |
+
" (model): MistralModel(\n",
|
| 200 |
+
" (embed_tokens): lora.Embedding(\n",
|
| 201 |
+
" (base_layer): Embedding(32027, 4096)\n",
|
| 202 |
+
" (lora_dropout): ModuleDict(\n",
|
| 203 |
+
" (default): Identity()\n",
|
| 204 |
+
" )\n",
|
| 205 |
+
" (lora_A): ModuleDict()\n",
|
| 206 |
+
" (lora_B): ModuleDict()\n",
|
| 207 |
+
" (lora_embedding_A): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 64x32027])\n",
|
| 208 |
+
" (lora_embedding_B): ParameterDict( (default): Parameter containing: [torch.FloatTensor of size 4096x64])\n",
|
| 209 |
+
" )\n",
|
| 210 |
+
" (layers): ModuleList(\n",
|
| 211 |
+
" (0-31): 32 x MistralDecoderLayer(\n",
|
| 212 |
+
" (self_attn): MistralAttention(\n",
|
| 213 |
+
" (q_proj): lora.Linear(\n",
|
| 214 |
+
" (base_layer): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 215 |
+
" (lora_dropout): ModuleDict(\n",
|
| 216 |
+
" (default): Identity()\n",
|
| 217 |
+
" )\n",
|
| 218 |
+
" (lora_A): ModuleDict(\n",
|
| 219 |
+
" (default): Linear(in_features=4096, out_features=64, bias=False)\n",
|
| 220 |
+
" )\n",
|
| 221 |
+
" (lora_B): ModuleDict(\n",
|
| 222 |
+
" (default): Linear(in_features=64, out_features=4096, bias=False)\n",
|
| 223 |
+
" )\n",
|
| 224 |
+
" (lora_embedding_A): ParameterDict()\n",
|
| 225 |
+
" (lora_embedding_B): ParameterDict()\n",
|
| 226 |
+
" )\n",
|
| 227 |
+
" (k_proj): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
| 228 |
+
" (v_proj): lora.Linear(\n",
|
| 229 |
+
" (base_layer): Linear(in_features=4096, out_features=1024, bias=False)\n",
|
| 230 |
+
" (lora_dropout): ModuleDict(\n",
|
| 231 |
+
" (default): Identity()\n",
|
| 232 |
+
" )\n",
|
| 233 |
+
" (lora_A): ModuleDict(\n",
|
| 234 |
+
" (default): Linear(in_features=4096, out_features=64, bias=False)\n",
|
| 235 |
+
" )\n",
|
| 236 |
+
" (lora_B): ModuleDict(\n",
|
| 237 |
+
" (default): Linear(in_features=64, out_features=1024, bias=False)\n",
|
| 238 |
+
" )\n",
|
| 239 |
+
" (lora_embedding_A): ParameterDict()\n",
|
| 240 |
+
" (lora_embedding_B): ParameterDict()\n",
|
| 241 |
+
" )\n",
|
| 242 |
+
" (o_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 243 |
+
" (rotary_emb): MistralRotaryEmbedding()\n",
|
| 244 |
+
" )\n",
|
| 245 |
+
" (mlp): MistralMLP(\n",
|
| 246 |
+
" (gate_proj): Linear(in_features=4096, out_features=14336, bias=False)\n",
|
| 247 |
+
" (up_proj): Linear(in_features=4096, out_features=14336, bias=False)\n",
|
| 248 |
+
" (down_proj): Linear(in_features=14336, out_features=4096, bias=False)\n",
|
| 249 |
+
" (act_fn): SiLU()\n",
|
| 250 |
+
" )\n",
|
| 251 |
+
" (input_layernorm): MistralRMSNorm()\n",
|
| 252 |
+
" (post_attention_layernorm): MistralRMSNorm()\n",
|
| 253 |
+
" )\n",
|
| 254 |
+
" )\n",
|
| 255 |
+
" (norm): MistralRMSNorm()\n",
|
| 256 |
+
" )\n",
|
| 257 |
+
" (lm_head): lora.Linear(\n",
|
| 258 |
+
" (base_layer): Linear(in_features=4096, out_features=32027, bias=False)\n",
|
| 259 |
+
" (lora_dropout): ModuleDict(\n",
|
| 260 |
+
" (default): Identity()\n",
|
| 261 |
+
" )\n",
|
| 262 |
+
" (lora_A): ModuleDict(\n",
|
| 263 |
+
" (default): Linear(in_features=4096, out_features=64, bias=False)\n",
|
| 264 |
+
" )\n",
|
| 265 |
+
" (lora_B): ModuleDict(\n",
|
| 266 |
+
" (default): Linear(in_features=64, out_features=32027, bias=False)\n",
|
| 267 |
+
" )\n",
|
| 268 |
+
" (lora_embedding_A): ParameterDict()\n",
|
| 269 |
+
" (lora_embedding_B): ParameterDict()\n",
|
| 270 |
+
" )\n",
|
| 271 |
+
" )\n",
|
| 272 |
+
" )\n",
|
| 273 |
+
")\n"
|
| 274 |
+
]
|
| 275 |
+
}
|
| 276 |
+
],
|
| 277 |
+
"source": [
|
| 278 |
+
"config = LoraConfig(\n",
|
| 279 |
+
" r=64, lora_alpha=128, lora_dropout=0.0, target_modules=[\"embed_tokens\", \"lm_head\", \"q_proj\", \"v_proj\"]\n",
|
| 280 |
+
")\n",
|
| 281 |
+
"model = get_peft_model(model, config)\n",
|
| 282 |
+
"print(model.print_trainable_parameters())\n",
|
| 283 |
+
"print(model)"
|
| 284 |
+
]
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"cell_type": "markdown",
|
| 288 |
+
"id": "15ac9945-4fcb-45f4-9478-d99a25a519cc",
|
| 289 |
+
"metadata": {},
|
| 290 |
+
"source": [
|
| 291 |
+
"## Preapre Dataset"
|
| 292 |
+
]
|
| 293 |
+
},
|
| 294 |
+
{
|
| 295 |
+
"cell_type": "code",
|
| 296 |
+
"execution_count": 5,
|
| 297 |
+
"id": "c6980d59-42d4-4a27-84cc-a9719302088b",
|
| 298 |
+
"metadata": {},
|
| 299 |
+
"outputs": [
|
| 300 |
+
{
|
| 301 |
+
"data": {
|
| 302 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 303 |
+
"model_id": "33d9539232da48f3ae922216b98ae462",
|
| 304 |
+
"version_major": 2,
|
| 305 |
+
"version_minor": 0
|
| 306 |
+
},
|
| 307 |
+
"text/plain": [
|
| 308 |
+
"Running tokenizer on dataset: 0%| | 0/986 [00:00<?, ? examples/s]"
|
| 309 |
+
]
|
| 310 |
+
},
|
| 311 |
+
"metadata": {},
|
| 312 |
+
"output_type": "display_data"
|
| 313 |
+
},
|
| 314 |
+
{
|
| 315 |
+
"data": {
|
| 316 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 317 |
+
"model_id": "b7a33811d93742099140240cad91b679",
|
| 318 |
+
"version_major": 2,
|
| 319 |
+
"version_minor": 0
|
| 320 |
+
},
|
| 321 |
+
"text/plain": [
|
| 322 |
+
"Running tokenizer on dataset: 0%| | 0/247 [00:00<?, ? examples/s]"
|
| 323 |
+
]
|
| 324 |
+
},
|
| 325 |
+
"metadata": {},
|
| 326 |
+
"output_type": "display_data"
|
| 327 |
+
}
|
| 328 |
+
],
|
| 329 |
+
"source": [
|
| 330 |
+
"from datasets import load_dataset\n",
|
| 331 |
+
"\n",
|
| 332 |
+
"dataset = load_dataset(\"smangrul/assistant_chatbot_dataset\")\n",
|
| 333 |
+
"dataset = dataset[\"train\"].train_test_split(0.2)\n",
|
| 334 |
+
"\n",
|
| 335 |
+
"text_column = \"context\"\n",
|
| 336 |
+
"label_column = \"target\"\n",
|
| 337 |
+
"max_length = 512\n",
|
| 338 |
+
"\n",
|
| 339 |
+
"\n",
|
| 340 |
+
"def preprocess_function(examples):\n",
|
| 341 |
+
" batch_size = len(examples[text_column])\n",
|
| 342 |
+
" targets = [str(x) for x in examples[label_column]]\n",
|
| 343 |
+
" model_inputs = tokenizer(examples[text_column])\n",
|
| 344 |
+
" labels = tokenizer(targets, add_special_tokens=False) # don't add bos token because we concatenate with inputs\n",
|
| 345 |
+
" for i in range(batch_size):\n",
|
| 346 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
| 347 |
+
" label_input_ids = labels[\"input_ids\"][i] + [tokenizer.eos_token_id]\n",
|
| 348 |
+
" # print(i, sample_input_ids, label_input_ids)\n",
|
| 349 |
+
" model_inputs[\"input_ids\"][i] = sample_input_ids + label_input_ids\n",
|
| 350 |
+
" labels[\"input_ids\"][i] = [-100] * len(sample_input_ids) + label_input_ids\n",
|
| 351 |
+
" model_inputs[\"attention_mask\"][i] = [1] * len(model_inputs[\"input_ids\"][i])\n",
|
| 352 |
+
" # print(model_inputs)\n",
|
| 353 |
+
" for i in range(batch_size):\n",
|
| 354 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
| 355 |
+
" label_input_ids = labels[\"input_ids\"][i]\n",
|
| 356 |
+
" model_inputs[\"input_ids\"][i] = [tokenizer.pad_token_id] * (\n",
|
| 357 |
+
" max_length - len(sample_input_ids)\n",
|
| 358 |
+
" ) + sample_input_ids\n",
|
| 359 |
+
" model_inputs[\"attention_mask\"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[\n",
|
| 360 |
+
" \"attention_mask\"\n",
|
| 361 |
+
" ][i]\n",
|
| 362 |
+
" labels[\"input_ids\"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids\n",
|
| 363 |
+
" model_inputs[\"input_ids\"][i] = model_inputs[\"input_ids\"][i][:max_length]\n",
|
| 364 |
+
" model_inputs[\"attention_mask\"][i] = model_inputs[\"attention_mask\"][i][:max_length]\n",
|
| 365 |
+
" labels[\"input_ids\"][i] = labels[\"input_ids\"][i][:max_length]\n",
|
| 366 |
+
" model_inputs[\"labels\"] = labels[\"input_ids\"]\n",
|
| 367 |
+
" return model_inputs\n",
|
| 368 |
+
"\n",
|
| 369 |
+
"\n",
|
| 370 |
+
"processed_datasets = dataset.map(\n",
|
| 371 |
+
" preprocess_function,\n",
|
| 372 |
+
" batched=True,\n",
|
| 373 |
+
" num_proc=1,\n",
|
| 374 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 375 |
+
" load_from_cache_file=False,\n",
|
| 376 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 377 |
+
")\n",
|
| 378 |
+
"\n",
|
| 379 |
+
"train_dataset = processed_datasets[\"train\"]"
|
| 380 |
+
]
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"cell_type": "code",
|
| 384 |
+
"execution_count": 6,
|
| 385 |
+
"id": "5671b1ee-dca4-4705-8399-5c2967b9fb5c",
|
| 386 |
+
"metadata": {},
|
| 387 |
+
"outputs": [
|
| 388 |
+
{
|
| 389 |
+
"data": {
|
| 390 |
+
"text/plain": [
|
| 391 |
+
"Dataset({\n",
|
| 392 |
+
" features: ['input_ids', 'attention_mask', 'labels'],\n",
|
| 393 |
+
" num_rows: 986\n",
|
| 394 |
+
"})"
|
| 395 |
+
]
|
| 396 |
+
},
|
| 397 |
+
"execution_count": 6,
|
| 398 |
+
"metadata": {},
|
| 399 |
+
"output_type": "execute_result"
|
| 400 |
+
}
|
| 401 |
+
],
|
| 402 |
+
"source": [
|
| 403 |
+
"train_dataset"
|
| 404 |
+
]
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"cell_type": "code",
|
| 408 |
+
"execution_count": 7,
|
| 409 |
+
"id": "3f38888e-4382-415b-869d-7202a816606a",
|
| 410 |
+
"metadata": {},
|
| 411 |
+
"outputs": [],
|
| 412 |
+
"source": [
|
| 413 |
+
"train_dataloader = DataLoader(\n",
|
| 414 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=8, pin_memory=True\n",
|
| 415 |
+
")"
|
| 416 |
+
]
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"cell_type": "code",
|
| 420 |
+
"execution_count": 8,
|
| 421 |
+
"id": "53b9e552-4c5d-43e8-a9cd-8073af8d4280",
|
| 422 |
+
"metadata": {},
|
| 423 |
+
"outputs": [
|
| 424 |
+
{
|
| 425 |
+
"data": {
|
| 426 |
+
"text/plain": [
|
| 427 |
+
"{'input_ids': tensor([[32002, 32002, 32002, ..., 32017, 32001, 32001],\n",
|
| 428 |
+
" [32002, 32002, 32002, ..., 32017, 32001, 32001],\n",
|
| 429 |
+
" [32002, 32002, 32002, ..., 32017, 32001, 32001],\n",
|
| 430 |
+
" ...,\n",
|
| 431 |
+
" [32002, 32002, 32002, ..., 32017, 32001, 32001],\n",
|
| 432 |
+
" [32002, 32002, 32002, ..., 32017, 32001, 32001],\n",
|
| 433 |
+
" [32002, 32002, 32002, ..., 32017, 32001, 32001]]),\n",
|
| 434 |
+
" 'attention_mask': tensor([[0, 0, 0, ..., 1, 1, 1],\n",
|
| 435 |
+
" [0, 0, 0, ..., 1, 1, 1],\n",
|
| 436 |
+
" [0, 0, 0, ..., 1, 1, 1],\n",
|
| 437 |
+
" ...,\n",
|
| 438 |
+
" [0, 0, 0, ..., 1, 1, 1],\n",
|
| 439 |
+
" [0, 0, 0, ..., 1, 1, 1],\n",
|
| 440 |
+
" [0, 0, 0, ..., 1, 1, 1]]),\n",
|
| 441 |
+
" 'labels': tensor([[ -100, -100, -100, ..., 32017, 32001, 32001],\n",
|
| 442 |
+
" [ -100, -100, -100, ..., 32017, 32001, 32001],\n",
|
| 443 |
+
" [ -100, -100, -100, ..., 32017, 32001, 32001],\n",
|
| 444 |
+
" ...,\n",
|
| 445 |
+
" [ -100, -100, -100, ..., 32017, 32001, 32001],\n",
|
| 446 |
+
" [ -100, -100, -100, ..., 32017, 32001, 32001],\n",
|
| 447 |
+
" [ -100, -100, -100, ..., 32017, 32001, 32001]])}"
|
| 448 |
+
]
|
| 449 |
+
},
|
| 450 |
+
"execution_count": 8,
|
| 451 |
+
"metadata": {},
|
| 452 |
+
"output_type": "execute_result"
|
| 453 |
+
}
|
| 454 |
+
],
|
| 455 |
+
"source": [
|
| 456 |
+
"next(iter(train_dataloader))"
|
| 457 |
+
]
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"cell_type": "code",
|
| 461 |
+
"execution_count": 9,
|
| 462 |
+
"id": "7de31ee2-185e-4658-9ad1-ae5f6bc3a611",
|
| 463 |
+
"metadata": {},
|
| 464 |
+
"outputs": [
|
| 465 |
+
{
|
| 466 |
+
"data": {
|
| 467 |
+
"text/plain": [
|
| 468 |
+
"\"<|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|pad|><|startoftext|><|begincontext|><|user|> Can you find me place to eat?<|system|> What kind of food would you like to have and where would you like me to search in?<|user|> Food kind of California will be perfect in SF.<|system|> There are 10 restaurants, Al's Place is one of the good restaurant in San Francisco.<|user|> Can you look for any other restaurant?<|system|> Alta Msp is one of the good restaurant in San Francisco.<|beginlastuserutterance|> Can you find me the address?<|endlastuserutterance|><|endcontext|><|begintarget|><|begindsts|><|begindst|><|beginintent|> FindRestaurants<|endintent|><|beginrequestedslots|> Restaurants^street_address<|endrequestedslots|><|beginbelief|> Restaurants^city->SF~San Francisco|Restaurants^cuisine->California<|endbelief|><|enddst|><|enddsts|><|beginuseraction|> REQUEST->Restaurants^street_address~<|enduseraction|><|beginaction|> INFORM->Restaurants^street_address~1275 Minnesota Street<|endaction|><|beginresponse|> The street address of the restaurant is 1275 Minnesota Street.<|endresponse|><|endtarget|><|endtarget|>\""
|
| 469 |
+
]
|
| 470 |
+
},
|
| 471 |
+
"execution_count": 9,
|
| 472 |
+
"metadata": {},
|
| 473 |
+
"output_type": "execute_result"
|
| 474 |
+
}
|
| 475 |
+
],
|
| 476 |
+
"source": [
|
| 477 |
+
"tokenizer.decode(train_dataset[0][\"input_ids\"])"
|
| 478 |
+
]
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"cell_type": "markdown",
|
| 482 |
+
"id": "239d1c83-196d-471e-9bf7-5f36dafa9894",
|
| 483 |
+
"metadata": {},
|
| 484 |
+
"source": [
|
| 485 |
+
"# Train the model"
|
| 486 |
+
]
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"cell_type": "code",
|
| 490 |
+
"execution_count": 10,
|
| 491 |
+
"id": "ec80d6ee",
|
| 492 |
+
"metadata": {},
|
| 493 |
+
"outputs": [
|
| 494 |
+
{
|
| 495 |
+
"name": "stderr",
|
| 496 |
+
"output_type": "stream",
|
| 497 |
+
"text": [
|
| 498 |
+
"Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\n",
|
| 499 |
+
"Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n",
|
| 500 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33msmangrul\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
|
| 501 |
+
]
|
| 502 |
+
},
|
| 503 |
+
{
|
| 504 |
+
"data": {
|
| 505 |
+
"text/html": [
|
| 506 |
+
"Tracking run with wandb version 0.16.0"
|
| 507 |
+
],
|
| 508 |
+
"text/plain": [
|
| 509 |
+
"<IPython.core.display.HTML object>"
|
| 510 |
+
]
|
| 511 |
+
},
|
| 512 |
+
"metadata": {},
|
| 513 |
+
"output_type": "display_data"
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"data": {
|
| 517 |
+
"text/html": [
|
| 518 |
+
"Run data is saved locally in <code>/raid/sourab/temp/wandb/run-20231128_230934-edod21gq</code>"
|
| 519 |
+
],
|
| 520 |
+
"text/plain": [
|
| 521 |
+
"<IPython.core.display.HTML object>"
|
| 522 |
+
]
|
| 523 |
+
},
|
| 524 |
+
"metadata": {},
|
| 525 |
+
"output_type": "display_data"
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"data": {
|
| 529 |
+
"text/html": [
|
| 530 |
+
"Syncing run <strong><a href='https://wandb.ai/smangrul/PeftExamples/runs/edod21gq' target=\"_blank\">ethereal-eon-1</a></strong> to <a href='https://wandb.ai/smangrul/PeftExamples' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
|
| 531 |
+
],
|
| 532 |
+
"text/plain": [
|
| 533 |
+
"<IPython.core.display.HTML object>"
|
| 534 |
+
]
|
| 535 |
+
},
|
| 536 |
+
"metadata": {},
|
| 537 |
+
"output_type": "display_data"
|
| 538 |
+
},
|
| 539 |
+
{
|
| 540 |
+
"data": {
|
| 541 |
+
"text/html": [
|
| 542 |
+
" View project at <a href='https://wandb.ai/smangrul/PeftExamples' target=\"_blank\">https://wandb.ai/smangrul/PeftExamples</a>"
|
| 543 |
+
],
|
| 544 |
+
"text/plain": [
|
| 545 |
+
"<IPython.core.display.HTML object>"
|
| 546 |
+
]
|
| 547 |
+
},
|
| 548 |
+
"metadata": {},
|
| 549 |
+
"output_type": "display_data"
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"data": {
|
| 553 |
+
"text/html": [
|
| 554 |
+
" View run at <a href='https://wandb.ai/smangrul/PeftExamples/runs/edod21gq' target=\"_blank\">https://wandb.ai/smangrul/PeftExamples/runs/edod21gq</a>"
|
| 555 |
+
],
|
| 556 |
+
"text/plain": [
|
| 557 |
+
"<IPython.core.display.HTML object>"
|
| 558 |
+
]
|
| 559 |
+
},
|
| 560 |
+
"metadata": {},
|
| 561 |
+
"output_type": "display_data"
|
| 562 |
+
},
|
| 563 |
+
{
|
| 564 |
+
"name": "stderr",
|
| 565 |
+
"output_type": "stream",
|
| 566 |
+
"text": [
|
| 567 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...\n"
|
| 568 |
+
]
|
| 569 |
+
},
|
| 570 |
+
{
|
| 571 |
+
"data": {
|
| 572 |
+
"text/html": [
|
| 573 |
+
"\n",
|
| 574 |
+
" <div>\n",
|
| 575 |
+
" \n",
|
| 576 |
+
" <progress value='246' max='246' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 577 |
+
" [246/246 05:51, Epoch 2/2]\n",
|
| 578 |
+
" </div>\n",
|
| 579 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 580 |
+
" <thead>\n",
|
| 581 |
+
" <tr style=\"text-align: left;\">\n",
|
| 582 |
+
" <th>Step</th>\n",
|
| 583 |
+
" <th>Training Loss</th>\n",
|
| 584 |
+
" </tr>\n",
|
| 585 |
+
" </thead>\n",
|
| 586 |
+
" <tbody>\n",
|
| 587 |
+
" <tr>\n",
|
| 588 |
+
" <td>10</td>\n",
|
| 589 |
+
" <td>5.189800</td>\n",
|
| 590 |
+
" </tr>\n",
|
| 591 |
+
" <tr>\n",
|
| 592 |
+
" <td>20</td>\n",
|
| 593 |
+
" <td>3.745500</td>\n",
|
| 594 |
+
" </tr>\n",
|
| 595 |
+
" <tr>\n",
|
| 596 |
+
" <td>30</td>\n",
|
| 597 |
+
" <td>2.371500</td>\n",
|
| 598 |
+
" </tr>\n",
|
| 599 |
+
" <tr>\n",
|
| 600 |
+
" <td>40</td>\n",
|
| 601 |
+
" <td>1.630200</td>\n",
|
| 602 |
+
" </tr>\n",
|
| 603 |
+
" <tr>\n",
|
| 604 |
+
" <td>50</td>\n",
|
| 605 |
+
" <td>1.302600</td>\n",
|
| 606 |
+
" </tr>\n",
|
| 607 |
+
" <tr>\n",
|
| 608 |
+
" <td>60</td>\n",
|
| 609 |
+
" <td>0.999400</td>\n",
|
| 610 |
+
" </tr>\n",
|
| 611 |
+
" <tr>\n",
|
| 612 |
+
" <td>70</td>\n",
|
| 613 |
+
" <td>0.704100</td>\n",
|
| 614 |
+
" </tr>\n",
|
| 615 |
+
" <tr>\n",
|
| 616 |
+
" <td>80</td>\n",
|
| 617 |
+
" <td>0.527800</td>\n",
|
| 618 |
+
" </tr>\n",
|
| 619 |
+
" <tr>\n",
|
| 620 |
+
" <td>90</td>\n",
|
| 621 |
+
" <td>0.509700</td>\n",
|
| 622 |
+
" </tr>\n",
|
| 623 |
+
" <tr>\n",
|
| 624 |
+
" <td>100</td>\n",
|
| 625 |
+
" <td>0.382300</td>\n",
|
| 626 |
+
" </tr>\n",
|
| 627 |
+
" <tr>\n",
|
| 628 |
+
" <td>110</td>\n",
|
| 629 |
+
" <td>0.318200</td>\n",
|
| 630 |
+
" </tr>\n",
|
| 631 |
+
" <tr>\n",
|
| 632 |
+
" <td>120</td>\n",
|
| 633 |
+
" <td>0.323500</td>\n",
|
| 634 |
+
" </tr>\n",
|
| 635 |
+
" <tr>\n",
|
| 636 |
+
" <td>130</td>\n",
|
| 637 |
+
" <td>0.263400</td>\n",
|
| 638 |
+
" </tr>\n",
|
| 639 |
+
" <tr>\n",
|
| 640 |
+
" <td>140</td>\n",
|
| 641 |
+
" <td>0.290900</td>\n",
|
| 642 |
+
" </tr>\n",
|
| 643 |
+
" <tr>\n",
|
| 644 |
+
" <td>150</td>\n",
|
| 645 |
+
" <td>0.277400</td>\n",
|
| 646 |
+
" </tr>\n",
|
| 647 |
+
" <tr>\n",
|
| 648 |
+
" <td>160</td>\n",
|
| 649 |
+
" <td>0.232800</td>\n",
|
| 650 |
+
" </tr>\n",
|
| 651 |
+
" <tr>\n",
|
| 652 |
+
" <td>170</td>\n",
|
| 653 |
+
" <td>0.223600</td>\n",
|
| 654 |
+
" </tr>\n",
|
| 655 |
+
" <tr>\n",
|
| 656 |
+
" <td>180</td>\n",
|
| 657 |
+
" <td>0.229600</td>\n",
|
| 658 |
+
" </tr>\n",
|
| 659 |
+
" <tr>\n",
|
| 660 |
+
" <td>190</td>\n",
|
| 661 |
+
" <td>0.233100</td>\n",
|
| 662 |
+
" </tr>\n",
|
| 663 |
+
" <tr>\n",
|
| 664 |
+
" <td>200</td>\n",
|
| 665 |
+
" <td>0.210200</td>\n",
|
| 666 |
+
" </tr>\n",
|
| 667 |
+
" <tr>\n",
|
| 668 |
+
" <td>210</td>\n",
|
| 669 |
+
" <td>0.245800</td>\n",
|
| 670 |
+
" </tr>\n",
|
| 671 |
+
" <tr>\n",
|
| 672 |
+
" <td>220</td>\n",
|
| 673 |
+
" <td>0.197300</td>\n",
|
| 674 |
+
" </tr>\n",
|
| 675 |
+
" <tr>\n",
|
| 676 |
+
" <td>230</td>\n",
|
| 677 |
+
" <td>0.210100</td>\n",
|
| 678 |
+
" </tr>\n",
|
| 679 |
+
" <tr>\n",
|
| 680 |
+
" <td>240</td>\n",
|
| 681 |
+
" <td>0.209800</td>\n",
|
| 682 |
+
" </tr>\n",
|
| 683 |
+
" </tbody>\n",
|
| 684 |
+
"</table><p>"
|
| 685 |
+
],
|
| 686 |
+
"text/plain": [
|
| 687 |
+
"<IPython.core.display.HTML object>"
|
| 688 |
+
]
|
| 689 |
+
},
|
| 690 |
+
"metadata": {},
|
| 691 |
+
"output_type": "display_data"
|
| 692 |
+
},
|
| 693 |
+
{
|
| 694 |
+
"data": {
|
| 695 |
+
"text/plain": [
|
| 696 |
+
"TrainOutput(global_step=246, training_loss=0.8516577879587809, metrics={'train_runtime': 354.9013, 'train_samples_per_second': 5.556, 'train_steps_per_second': 0.693, 'total_flos': 4.318233532091597e+16, 'train_loss': 0.8516577879587809, 'epoch': 2.0})"
|
| 697 |
+
]
|
| 698 |
+
},
|
| 699 |
+
"execution_count": 10,
|
| 700 |
+
"metadata": {},
|
| 701 |
+
"output_type": "execute_result"
|
| 702 |
+
}
|
| 703 |
+
],
|
| 704 |
+
"source": [
|
| 705 |
+
"training_args = TrainingArguments(\n",
|
| 706 |
+
" output_dir=\"mistral_lora_clm_with_added_tokens\",\n",
|
| 707 |
+
" num_train_epochs=2,\n",
|
| 708 |
+
" save_total_limit=5,\n",
|
| 709 |
+
" per_device_train_batch_size=8,\n",
|
| 710 |
+
" warmup_steps=10,\n",
|
| 711 |
+
" weight_decay=0.0001,\n",
|
| 712 |
+
" dataloader_drop_last=True,\n",
|
| 713 |
+
" bf16=True,\n",
|
| 714 |
+
" logging_steps=10,\n",
|
| 715 |
+
" learning_rate=1e-5,\n",
|
| 716 |
+
" gradient_checkpointing=True,\n",
|
| 717 |
+
" gradient_checkpointing_kwargs={\"use_reentrant\": False},\n",
|
| 718 |
+
" remove_unused_columns=False,\n",
|
| 719 |
+
" hub_model_id=\"smangrul/mistral_lora_clm_with_added_tokens\",\n",
|
| 720 |
+
" push_to_hub=True,\n",
|
| 721 |
+
" hub_private_repo=True,\n",
|
| 722 |
+
")\n",
|
| 723 |
+
"trainer = Trainer(\n",
|
| 724 |
+
" model=model,\n",
|
| 725 |
+
" args=training_args,\n",
|
| 726 |
+
" train_dataset=train_dataset,\n",
|
| 727 |
+
" data_collator=default_data_collator,\n",
|
| 728 |
+
")\n",
|
| 729 |
+
"# model.config.use_cache = False\n",
|
| 730 |
+
"trainer.train()"
|
| 731 |
+
]
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"cell_type": "markdown",
|
| 735 |
+
"id": "7bc1cbed-4eb9-4aaa-ab5f-5b91bf432307",
|
| 736 |
+
"metadata": {},
|
| 737 |
+
"source": [
|
| 738 |
+
"# Check the model output on a sample from evaluation dataset"
|
| 739 |
+
]
|
| 740 |
+
},
|
| 741 |
+
{
|
| 742 |
+
"cell_type": "code",
|
| 743 |
+
"execution_count": 11,
|
| 744 |
+
"id": "71851793",
|
| 745 |
+
"metadata": {},
|
| 746 |
+
"outputs": [
|
| 747 |
+
{
|
| 748 |
+
"name": "stdout",
|
| 749 |
+
"output_type": "stream",
|
| 750 |
+
"text": [
|
| 751 |
+
"context=\"<|begincontext|><|user|>Can you find me a place to eat please?<|system|>Where at? And what kind of cuisine are you craving?<|user|>Somewhere in SF, and I am really craving Thai food at the moment!<|system|>I found a bunch of restaurants, there's actually 10 that you might like in San Francisco, one of them being Baan Thai House & Wine Bar<|user|>How can I reach them? And what's their address?<|system|>You can reach them by phone at 415-379-4505 and visit them at 534 Irving Street<|beginlastuserutterance|>Great, that restaurant sounds good<|endlastuserutterance|><|endcontext|>\" \n",
|
| 752 |
+
"\n",
|
| 753 |
+
" target_predicted='<|begintarget|><|begindsts|><|begindst|><|beginintent|> FindRestaurants<|endintent|><|beginbelief|> Restaurants^city->SF~San Francisco|Restaurants^cuisine->Thai|Restaurants^restaurant_name->Baan Thai House & Wine Bar<|endbelief|><|enddst|><|enddsts|><|beginuseraction|> REQUEST->Restaurants^phone_number~|REQUEST->Restaurants^street_address~<|enduseraction|><|beginaction|> INFORM->Restaurants^phone_number~415-379-4505|INFORM->Restaurants^street_address~534 Irving Street<|endaction|><|beginresponse|> Great, the phone number is 415-379-4505 and the address is 534 Irving Street<|endresponse|><|endtarget|>' \n",
|
| 754 |
+
"\n",
|
| 755 |
+
" target='<|begintarget|><|begindsts|><|begindst|><|beginintent|>FindRestaurants<|endintent|><|beginbelief|>Restaurants^city->SF~San Francisco|Restaurants^cuisine->Thai|Restaurants^restaurant_name->Baan Thai House & Wine Bar<|endbelief|><|enddst|><|enddsts|><|beginuseraction|>SELECT->Restaurants^~<|enduseraction|><|beginaction|>OFFER_INTENT->Restaurants^intent~ReserveRestaurant<|endaction|><|beginresponse|>Want me to book a table?<|endresponse|><|endtarget|>'\n"
|
| 756 |
+
]
|
| 757 |
+
}
|
| 758 |
+
],
|
| 759 |
+
"source": [
|
| 760 |
+
"import random\n",
|
| 761 |
+
"\n",
|
| 762 |
+
"i = random.randint(0, len(dataset[\"test\"]))\n",
|
| 763 |
+
"context = dataset[\"test\"][i][\"context\"]\n",
|
| 764 |
+
"\n",
|
| 765 |
+
"batch = tokenizer(context, return_tensors=\"pt\")\n",
|
| 766 |
+
"batch = {k: v.to(\"cuda\") for k, v in batch.items()}\n",
|
| 767 |
+
"model.eval()\n",
|
| 768 |
+
"output_tokens = model.generate(\n",
|
| 769 |
+
" **batch,\n",
|
| 770 |
+
" max_new_tokens=256,\n",
|
| 771 |
+
" do_sample=True,\n",
|
| 772 |
+
" temperature=0.2,\n",
|
| 773 |
+
" top_p=0.95,\n",
|
| 774 |
+
" top_k=50,\n",
|
| 775 |
+
" eos_token_id=tokenizer.eos_token_id,\n",
|
| 776 |
+
" pad_token_id=tokenizer.pad_token_id,\n",
|
| 777 |
+
")\n",
|
| 778 |
+
"target_predicted = tokenizer.decode(output_tokens[0], skip_special_tokens=False).split(\"<|endcontext|>\")[1]\n",
|
| 779 |
+
"target = dataset[\"test\"][i][\"target\"]\n",
|
| 780 |
+
"print(f\"{context=} \\n\\n {target_predicted=} \\n\\n {target=}\")"
|
| 781 |
+
]
|
| 782 |
+
},
|
| 783 |
+
{
|
| 784 |
+
"cell_type": "markdown",
|
| 785 |
+
"id": "f940a660-2f7c-4a3a-b412-3f037aedb890",
|
| 786 |
+
"metadata": {},
|
| 787 |
+
"source": [
|
| 788 |
+
"# Save the Adapter model "
|
| 789 |
+
]
|
| 790 |
+
},
|
| 791 |
+
{
|
| 792 |
+
"cell_type": "markdown",
|
| 793 |
+
"id": "7ebe05e9-9b93-42f6-bba8-46b8cc3d100f",
|
| 794 |
+
"metadata": {},
|
| 795 |
+
"source": [
|
| 796 |
+
"When the lora layers are applied to embedding layers, the corresponding base model embedding layers are also saved. "
|
| 797 |
+
]
|
| 798 |
+
},
|
| 799 |
+
{
|
| 800 |
+
"cell_type": "code",
|
| 801 |
+
"execution_count": 12,
|
| 802 |
+
"id": "3d7459ba-caa8-4f10-aa70-89be4541cbdf",
|
| 803 |
+
"metadata": {},
|
| 804 |
+
"outputs": [
|
| 805 |
+
{
|
| 806 |
+
"name": "stderr",
|
| 807 |
+
"output_type": "stream",
|
| 808 |
+
"text": [
|
| 809 |
+
"/raid/sourab/peft/src/peft/utils/save_and_load.py:128: UserWarning: Setting `is_embedding_layer_resized` to `True` as embedding layers found in `target_modules`\n",
|
| 810 |
+
" warnings.warn(\"Setting `is_embedding_layer_resized` to `True` as embedding layers found in `target_modules`\")\n"
|
| 811 |
+
]
|
| 812 |
+
},
|
| 813 |
+
{
|
| 814 |
+
"data": {
|
| 815 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 816 |
+
"model_id": "8d23186832014f209939ab83e79da011",
|
| 817 |
+
"version_major": 2,
|
| 818 |
+
"version_minor": 0
|
| 819 |
+
},
|
| 820 |
+
"text/plain": [
|
| 821 |
+
"Upload 3 LFS files: 0%| | 0/3 [00:00<?, ?it/s]"
|
| 822 |
+
]
|
| 823 |
+
},
|
| 824 |
+
"metadata": {},
|
| 825 |
+
"output_type": "display_data"
|
| 826 |
+
},
|
| 827 |
+
{
|
| 828 |
+
"data": {
|
| 829 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 830 |
+
"model_id": "a3d831bc7d8843038364e821aacff5f1",
|
| 831 |
+
"version_major": 2,
|
| 832 |
+
"version_minor": 0
|
| 833 |
+
},
|
| 834 |
+
"text/plain": [
|
| 835 |
+
"adapter_model.safetensors: 0%| | 0.00/1.18G [00:00<?, ?B/s]"
|
| 836 |
+
]
|
| 837 |
+
},
|
| 838 |
+
"metadata": {},
|
| 839 |
+
"output_type": "display_data"
|
| 840 |
+
},
|
| 841 |
+
{
|
| 842 |
+
"data": {
|
| 843 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 844 |
+
"model_id": "84cc7a2a3a474bb791d61e2357dd229e",
|
| 845 |
+
"version_major": 2,
|
| 846 |
+
"version_minor": 0
|
| 847 |
+
},
|
| 848 |
+
"text/plain": [
|
| 849 |
+
"events.out.tfevents.1701209373.hf-dgx-01.667111.0: 0%| | 0.00/8.52k [00:00<?, ?B/s]"
|
| 850 |
+
]
|
| 851 |
+
},
|
| 852 |
+
"metadata": {},
|
| 853 |
+
"output_type": "display_data"
|
| 854 |
+
},
|
| 855 |
+
{
|
| 856 |
+
"data": {
|
| 857 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 858 |
+
"model_id": "7ce2025dd01647599c00578044512c8c",
|
| 859 |
+
"version_major": 2,
|
| 860 |
+
"version_minor": 0
|
| 861 |
+
},
|
| 862 |
+
"text/plain": [
|
| 863 |
+
"training_args.bin: 0%| | 0.00/4.79k [00:00<?, ?B/s]"
|
| 864 |
+
]
|
| 865 |
+
},
|
| 866 |
+
"metadata": {},
|
| 867 |
+
"output_type": "display_data"
|
| 868 |
+
},
|
| 869 |
+
{
|
| 870 |
+
"data": {
|
| 871 |
+
"text/plain": [
|
| 872 |
+
"CommitInfo(commit_url='https://huggingface.co/smangrul/mistral_lora_clm_with_added_tokens/commit/60ed7ea8bef10ce46d7a64229481dd1ad0e3d1c5', commit_message='Upload model', commit_description='', oid='60ed7ea8bef10ce46d7a64229481dd1ad0e3d1c5', pr_url=None, pr_revision=None, pr_num=None)"
|
| 873 |
+
]
|
| 874 |
+
},
|
| 875 |
+
"execution_count": 12,
|
| 876 |
+
"metadata": {},
|
| 877 |
+
"output_type": "execute_result"
|
| 878 |
+
}
|
| 879 |
+
],
|
| 880 |
+
"source": [
|
| 881 |
+
"trainer.push_to_hub()\n",
|
| 882 |
+
"trainer.model.push_to_hub(training_args.output_dir)"
|
| 883 |
+
]
|
| 884 |
+
},
|
| 885 |
+
{
|
| 886 |
+
"cell_type": "markdown",
|
| 887 |
+
"id": "66812cc4-f9a3-46c4-bcee-0cba03950685",
|
| 888 |
+
"metadata": {},
|
| 889 |
+
"source": [
|
| 890 |
+
"# Check the model loading is working as expected and generating plausible outputs."
|
| 891 |
+
]
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"cell_type": "code",
|
| 895 |
+
"execution_count": 13,
|
| 896 |
+
"id": "589c46d7-d567-40b4-ab7d-e0a9e1cab40e",
|
| 897 |
+
"metadata": {},
|
| 898 |
+
"outputs": [
|
| 899 |
+
{
|
| 900 |
+
"data": {
|
| 901 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 902 |
+
"model_id": "f98524da95b64a29a9016c6067313b2b",
|
| 903 |
+
"version_major": 2,
|
| 904 |
+
"version_minor": 0
|
| 905 |
+
},
|
| 906 |
+
"text/plain": [
|
| 907 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
| 908 |
+
]
|
| 909 |
+
},
|
| 910 |
+
"metadata": {},
|
| 911 |
+
"output_type": "display_data"
|
| 912 |
+
},
|
| 913 |
+
{
|
| 914 |
+
"data": {
|
| 915 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 916 |
+
"model_id": "aaae3bc0f52f45bbaab60687b71fc4cf",
|
| 917 |
+
"version_major": 2,
|
| 918 |
+
"version_minor": 0
|
| 919 |
+
},
|
| 920 |
+
"text/plain": [
|
| 921 |
+
"adapter_config.json: 0%| | 0.00/637 [00:00<?, ?B/s]"
|
| 922 |
+
]
|
| 923 |
+
},
|
| 924 |
+
"metadata": {},
|
| 925 |
+
"output_type": "display_data"
|
| 926 |
+
},
|
| 927 |
+
{
|
| 928 |
+
"data": {
|
| 929 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 930 |
+
"model_id": "1fc5754f41784d1aba00b93551894579",
|
| 931 |
+
"version_major": 2,
|
| 932 |
+
"version_minor": 0
|
| 933 |
+
},
|
| 934 |
+
"text/plain": [
|
| 935 |
+
"adapter_model.safetensors: 0%| | 0.00/1.18G [00:00<?, ?B/s]"
|
| 936 |
+
]
|
| 937 |
+
},
|
| 938 |
+
"metadata": {},
|
| 939 |
+
"output_type": "display_data"
|
| 940 |
+
},
|
| 941 |
+
{
|
| 942 |
+
"name": "stdout",
|
| 943 |
+
"output_type": "stream",
|
| 944 |
+
"text": [
|
| 945 |
+
"context=\"<|begincontext|><|user|>Can you find me a place to eat please?<|system|>Where at? And what kind of cuisine are you craving?<|user|>Somewhere in SF, and I am really craving Thai food at the moment!<|system|>I found a bunch of restaurants, there's actually 10 that you might like in San Francisco, one of them being Baan Thai House & Wine Bar<|user|>How can I reach them? And what's their address?<|system|>You can reach them by phone at 415-379-4505 and visit them at 534 Irving Street<|beginlastuserutterance|>Great, that restaurant sounds good<|endlastuserutterance|><|endcontext|>\" \n",
|
| 946 |
+
"\n",
|
| 947 |
+
" target_predicted='<|begintarget|><|begindsts|><|begindst|><|beginintent|> FindRestaurant<|endintent|><|beginbelief|> Restaurants^city->SF~San Francisco|Restaurants^cuisine->Thai|Restaurants^restaurant_name->Baan Thai House & Wine Bar<|endbelief|><|enddst|><|enddsts|><|beginuseraction|> REQUEST->Restaurants^phone_number~|REQUEST->Restaurants^street_address~<|enduseraction|><|beginaction|> INFORM->Restaurants^phone_number~415-379-4505|INFORM->Restaurants^street_address~534 Irving Street<|endaction|><|beginresponse|> The phone number is 415-379-4505 and the address is 534 Irving Street<|endresponse|><|endtarget|>' \n",
|
| 948 |
+
"\n",
|
| 949 |
+
" target='<|begintarget|><|begindsts|><|begindst|><|beginintent|>FindRestaurants<|endintent|><|beginbelief|>Restaurants^city->SF~San Francisco|Restaurants^cuisine->Thai|Restaurants^restaurant_name->Baan Thai House & Wine Bar<|endbelief|><|enddst|><|enddsts|><|beginuseraction|>SELECT->Restaurants^~<|enduseraction|><|beginaction|>OFFER_INTENT->Restaurants^intent~ReserveRestaurant<|endaction|><|beginresponse|>Want me to book a table?<|endresponse|><|endtarget|>'\n"
|
| 950 |
+
]
|
| 951 |
+
}
|
| 952 |
+
],
|
| 953 |
+
"source": [
|
| 954 |
+
"from peft import PeftModel\n",
|
| 955 |
+
"\n",
|
| 956 |
+
"inference_model = AutoModelForCausalLM.from_pretrained(\n",
|
| 957 |
+
" model_name,\n",
|
| 958 |
+
" low_cpu_mem_usage=True,\n",
|
| 959 |
+
" # use_flash_attention_2=True,\n",
|
| 960 |
+
")\n",
|
| 961 |
+
"inference_model.resize_token_embeddings(len(tokenizer))\n",
|
| 962 |
+
"\n",
|
| 963 |
+
"inference_model = PeftModel.from_pretrained(inference_model, \"smangrul/mistral_lora_clm_with_added_tokens\")\n",
|
| 964 |
+
"inference_model.to(\"cuda\")\n",
|
| 965 |
+
"inference_model.eval()\n",
|
| 966 |
+
"\n",
|
| 967 |
+
"output_tokens = inference_model.generate(\n",
|
| 968 |
+
" **batch,\n",
|
| 969 |
+
" max_new_tokens=256,\n",
|
| 970 |
+
" do_sample=True,\n",
|
| 971 |
+
" temperature=0.2,\n",
|
| 972 |
+
" top_p=0.95,\n",
|
| 973 |
+
" top_k=50,\n",
|
| 974 |
+
" eos_token_id=tokenizer.eos_token_id,\n",
|
| 975 |
+
" pad_token_id=tokenizer.pad_token_id,\n",
|
| 976 |
+
")\n",
|
| 977 |
+
"\n",
|
| 978 |
+
"target_predicted = tokenizer.decode(output_tokens[0], skip_special_tokens=False).split(\"<|endcontext|>\")[1]\n",
|
| 979 |
+
"print(f\"{context=} \\n\\n {target_predicted=} \\n\\n {target=}\")"
|
| 980 |
+
]
|
| 981 |
+
},
|
| 982 |
+
{
|
| 983 |
+
"cell_type": "code",
|
| 984 |
+
"execution_count": null,
|
| 985 |
+
"id": "fd57f6e8-761f-4e0b-941c-f6973e13b186",
|
| 986 |
+
"metadata": {},
|
| 987 |
+
"outputs": [],
|
| 988 |
+
"source": []
|
| 989 |
+
}
|
| 990 |
+
],
|
| 991 |
+
"metadata": {
|
| 992 |
+
"kernelspec": {
|
| 993 |
+
"display_name": "Python 3 (ipykernel)",
|
| 994 |
+
"language": "python",
|
| 995 |
+
"name": "python3"
|
| 996 |
+
},
|
| 997 |
+
"language_info": {
|
| 998 |
+
"codemirror_mode": {
|
| 999 |
+
"name": "ipython",
|
| 1000 |
+
"version": 3
|
| 1001 |
+
},
|
| 1002 |
+
"file_extension": ".py",
|
| 1003 |
+
"mimetype": "text/x-python",
|
| 1004 |
+
"name": "python",
|
| 1005 |
+
"nbconvert_exporter": "python",
|
| 1006 |
+
"pygments_lexer": "ipython3",
|
| 1007 |
+
"version": "3.10.13"
|
| 1008 |
+
}
|
| 1009 |
+
},
|
| 1010 |
+
"nbformat": 4,
|
| 1011 |
+
"nbformat_minor": 5
|
| 1012 |
+
}
|
prompt_tuning_clm.ipynb
ADDED
|
@@ -0,0 +1,1229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "71fbfca2",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"from transformers import AutoModelForCausalLM\n",
|
| 11 |
+
"from peft import get_peft_config, get_peft_model, PromptTuningInit, PromptTuningConfig, TaskType, PeftType\n",
|
| 12 |
+
"import torch\n",
|
| 13 |
+
"from datasets import load_dataset\n",
|
| 14 |
+
"import os\n",
|
| 15 |
+
"from transformers import AutoTokenizer\n",
|
| 16 |
+
"from torch.utils.data import DataLoader\n",
|
| 17 |
+
"from transformers import default_data_collator, get_linear_schedule_with_warmup\n",
|
| 18 |
+
"from tqdm import tqdm\n",
|
| 19 |
+
"from datasets import load_dataset\n",
|
| 20 |
+
"\n",
|
| 21 |
+
"device = \"cuda\"\n",
|
| 22 |
+
"model_name_or_path = \"bigscience/bloomz-560m\"\n",
|
| 23 |
+
"tokenizer_name_or_path = \"bigscience/bloomz-560m\"\n",
|
| 24 |
+
"peft_config = PromptTuningConfig(\n",
|
| 25 |
+
" task_type=TaskType.CAUSAL_LM,\n",
|
| 26 |
+
" prompt_tuning_init=PromptTuningInit.TEXT,\n",
|
| 27 |
+
" num_virtual_tokens=8,\n",
|
| 28 |
+
" prompt_tuning_init_text=\"Classify if the tweet is a complaint or not:\",\n",
|
| 29 |
+
" tokenizer_name_or_path=model_name_or_path,\n",
|
| 30 |
+
")\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"dataset_name = \"twitter_complaints\"\n",
|
| 33 |
+
"checkpoint_name = f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}_v1.pt\".replace(\n",
|
| 34 |
+
" \"/\", \"_\"\n",
|
| 35 |
+
")\n",
|
| 36 |
+
"text_column = \"Tweet text\"\n",
|
| 37 |
+
"label_column = \"text_label\"\n",
|
| 38 |
+
"max_length = 64\n",
|
| 39 |
+
"lr = 3e-2\n",
|
| 40 |
+
"num_epochs = 50\n",
|
| 41 |
+
"batch_size = 8"
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"cell_type": "code",
|
| 46 |
+
"execution_count": null,
|
| 47 |
+
"id": "e1a3648b",
|
| 48 |
+
"metadata": {},
|
| 49 |
+
"outputs": [],
|
| 50 |
+
"source": [
|
| 51 |
+
"from datasets import load_dataset\n",
|
| 52 |
+
"\n",
|
| 53 |
+
"dataset = load_dataset(\"ought/raft\", dataset_name)\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"classes = [k.replace(\"_\", \" \") for k in dataset[\"train\"].features[\"Label\"].names]\n",
|
| 56 |
+
"print(classes)\n",
|
| 57 |
+
"dataset = dataset.map(\n",
|
| 58 |
+
" lambda x: {\"text_label\": [classes[label] for label in x[\"Label\"]]},\n",
|
| 59 |
+
" batched=True,\n",
|
| 60 |
+
" num_proc=1,\n",
|
| 61 |
+
")\n",
|
| 62 |
+
"print(dataset)\n",
|
| 63 |
+
"dataset[\"train\"][0]"
|
| 64 |
+
]
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"cell_type": "code",
|
| 68 |
+
"execution_count": null,
|
| 69 |
+
"id": "fe12d4d3",
|
| 70 |
+
"metadata": {},
|
| 71 |
+
"outputs": [],
|
| 72 |
+
"source": [
|
| 73 |
+
"# data preprocessing\n",
|
| 74 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
|
| 75 |
+
"if tokenizer.pad_token_id is None:\n",
|
| 76 |
+
" tokenizer.pad_token_id = tokenizer.eos_token_id\n",
|
| 77 |
+
"target_max_length = max([len(tokenizer(class_label)[\"input_ids\"]) for class_label in classes])\n",
|
| 78 |
+
"print(target_max_length)\n",
|
| 79 |
+
"\n",
|
| 80 |
+
"\n",
|
| 81 |
+
"def preprocess_function(examples):\n",
|
| 82 |
+
" batch_size = len(examples[text_column])\n",
|
| 83 |
+
" inputs = [f\"{text_column} : {x} Label : \" for x in examples[text_column]]\n",
|
| 84 |
+
" targets = [str(x) for x in examples[label_column]]\n",
|
| 85 |
+
" model_inputs = tokenizer(inputs)\n",
|
| 86 |
+
" labels = tokenizer(targets, add_special_tokens=False) # don't add bos token because we concatenate with inputs\n",
|
| 87 |
+
" for i in range(batch_size):\n",
|
| 88 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
| 89 |
+
" label_input_ids = labels[\"input_ids\"][i] + [tokenizer.eos_token_id]\n",
|
| 90 |
+
" # print(i, sample_input_ids, label_input_ids)\n",
|
| 91 |
+
" model_inputs[\"input_ids\"][i] = sample_input_ids + label_input_ids\n",
|
| 92 |
+
" labels[\"input_ids\"][i] = [-100] * len(sample_input_ids) + label_input_ids\n",
|
| 93 |
+
" model_inputs[\"attention_mask\"][i] = [1] * len(model_inputs[\"input_ids\"][i])\n",
|
| 94 |
+
" # print(model_inputs)\n",
|
| 95 |
+
" for i in range(batch_size):\n",
|
| 96 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
| 97 |
+
" label_input_ids = labels[\"input_ids\"][i]\n",
|
| 98 |
+
" model_inputs[\"input_ids\"][i] = [tokenizer.pad_token_id] * (\n",
|
| 99 |
+
" max_length - len(sample_input_ids)\n",
|
| 100 |
+
" ) + sample_input_ids\n",
|
| 101 |
+
" model_inputs[\"attention_mask\"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[\n",
|
| 102 |
+
" \"attention_mask\"\n",
|
| 103 |
+
" ][i]\n",
|
| 104 |
+
" labels[\"input_ids\"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids\n",
|
| 105 |
+
" model_inputs[\"input_ids\"][i] = torch.tensor(model_inputs[\"input_ids\"][i][:max_length])\n",
|
| 106 |
+
" model_inputs[\"attention_mask\"][i] = torch.tensor(model_inputs[\"attention_mask\"][i][:max_length])\n",
|
| 107 |
+
" labels[\"input_ids\"][i] = torch.tensor(labels[\"input_ids\"][i][:max_length])\n",
|
| 108 |
+
" model_inputs[\"labels\"] = labels[\"input_ids\"]\n",
|
| 109 |
+
" return model_inputs\n",
|
| 110 |
+
"\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"processed_datasets = dataset.map(\n",
|
| 113 |
+
" preprocess_function,\n",
|
| 114 |
+
" batched=True,\n",
|
| 115 |
+
" num_proc=1,\n",
|
| 116 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 117 |
+
" load_from_cache_file=False,\n",
|
| 118 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 119 |
+
")\n",
|
| 120 |
+
"\n",
|
| 121 |
+
"train_dataset = processed_datasets[\"train\"]\n",
|
| 122 |
+
"eval_dataset = processed_datasets[\"train\"]\n",
|
| 123 |
+
"\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"train_dataloader = DataLoader(\n",
|
| 126 |
+
" train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True\n",
|
| 127 |
+
")\n",
|
| 128 |
+
"eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"cell_type": "code",
|
| 133 |
+
"execution_count": null,
|
| 134 |
+
"id": "641b21fe",
|
| 135 |
+
"metadata": {},
|
| 136 |
+
"outputs": [],
|
| 137 |
+
"source": [
|
| 138 |
+
"def test_preprocess_function(examples):\n",
|
| 139 |
+
" batch_size = len(examples[text_column])\n",
|
| 140 |
+
" inputs = [f\"{text_column} : {x} Label : \" for x in examples[text_column]]\n",
|
| 141 |
+
" model_inputs = tokenizer(inputs)\n",
|
| 142 |
+
" # print(model_inputs)\n",
|
| 143 |
+
" for i in range(batch_size):\n",
|
| 144 |
+
" sample_input_ids = model_inputs[\"input_ids\"][i]\n",
|
| 145 |
+
" model_inputs[\"input_ids\"][i] = [tokenizer.pad_token_id] * (\n",
|
| 146 |
+
" max_length - len(sample_input_ids)\n",
|
| 147 |
+
" ) + sample_input_ids\n",
|
| 148 |
+
" model_inputs[\"attention_mask\"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[\n",
|
| 149 |
+
" \"attention_mask\"\n",
|
| 150 |
+
" ][i]\n",
|
| 151 |
+
" model_inputs[\"input_ids\"][i] = torch.tensor(model_inputs[\"input_ids\"][i][:max_length])\n",
|
| 152 |
+
" model_inputs[\"attention_mask\"][i] = torch.tensor(model_inputs[\"attention_mask\"][i][:max_length])\n",
|
| 153 |
+
" return model_inputs\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"\n",
|
| 156 |
+
"test_dataset = dataset[\"test\"].map(\n",
|
| 157 |
+
" test_preprocess_function,\n",
|
| 158 |
+
" batched=True,\n",
|
| 159 |
+
" num_proc=1,\n",
|
| 160 |
+
" remove_columns=dataset[\"train\"].column_names,\n",
|
| 161 |
+
" load_from_cache_file=False,\n",
|
| 162 |
+
" desc=\"Running tokenizer on dataset\",\n",
|
| 163 |
+
")\n",
|
| 164 |
+
"\n",
|
| 165 |
+
"test_dataloader = DataLoader(test_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)\n",
|
| 166 |
+
"next(iter(test_dataloader))"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "code",
|
| 171 |
+
"execution_count": null,
|
| 172 |
+
"id": "accc5012",
|
| 173 |
+
"metadata": {},
|
| 174 |
+
"outputs": [],
|
| 175 |
+
"source": [
|
| 176 |
+
"next(iter(train_dataloader))"
|
| 177 |
+
]
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"cell_type": "code",
|
| 181 |
+
"execution_count": null,
|
| 182 |
+
"id": "218df807",
|
| 183 |
+
"metadata": {},
|
| 184 |
+
"outputs": [],
|
| 185 |
+
"source": [
|
| 186 |
+
"len(test_dataloader)"
|
| 187 |
+
]
|
| 188 |
+
},
|
| 189 |
+
{
|
| 190 |
+
"cell_type": "code",
|
| 191 |
+
"execution_count": null,
|
| 192 |
+
"id": "47d1fedf",
|
| 193 |
+
"metadata": {},
|
| 194 |
+
"outputs": [],
|
| 195 |
+
"source": [
|
| 196 |
+
"next(iter(test_dataloader))"
|
| 197 |
+
]
|
| 198 |
+
},
|
| 199 |
+
{
|
| 200 |
+
"cell_type": "code",
|
| 201 |
+
"execution_count": null,
|
| 202 |
+
"id": "a773e092",
|
| 203 |
+
"metadata": {},
|
| 204 |
+
"outputs": [],
|
| 205 |
+
"source": [
|
| 206 |
+
"# creating model\n",
|
| 207 |
+
"model = AutoModelForCausalLM.from_pretrained(model_name_or_path)\n",
|
| 208 |
+
"model = get_peft_model(model, peft_config)\n",
|
| 209 |
+
"model.print_trainable_parameters()"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"cell_type": "code",
|
| 214 |
+
"execution_count": 9,
|
| 215 |
+
"id": "b2f91568",
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"# model\n",
|
| 220 |
+
"# optimizer and lr scheduler\n",
|
| 221 |
+
"optimizer = torch.optim.AdamW(model.parameters(), lr=lr)\n",
|
| 222 |
+
"lr_scheduler = get_linear_schedule_with_warmup(\n",
|
| 223 |
+
" optimizer=optimizer,\n",
|
| 224 |
+
" num_warmup_steps=0,\n",
|
| 225 |
+
" num_training_steps=(len(train_dataloader) * num_epochs),\n",
|
| 226 |
+
")"
|
| 227 |
+
]
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"cell_type": "code",
|
| 231 |
+
"execution_count": 10,
|
| 232 |
+
"id": "e4fb69fc",
|
| 233 |
+
"metadata": {},
|
| 234 |
+
"outputs": [
|
| 235 |
+
{
|
| 236 |
+
"name": "stderr",
|
| 237 |
+
"output_type": "stream",
|
| 238 |
+
"text": [
|
| 239 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 5.68it/s]\n",
|
| 240 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.48it/s]\n"
|
| 241 |
+
]
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"name": "stdout",
|
| 245 |
+
"output_type": "stream",
|
| 246 |
+
"text": [
|
| 247 |
+
"epoch=0: train_ppl=tensor(2.2720e+13, device='cuda:0') train_epoch_loss=tensor(30.7543, device='cuda:0') eval_ppl=tensor(483597.5625, device='cuda:0') eval_epoch_loss=tensor(13.0890, device='cuda:0')\n"
|
| 248 |
+
]
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"name": "stderr",
|
| 252 |
+
"output_type": "stream",
|
| 253 |
+
"text": [
|
| 254 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.91it/s]\n",
|
| 255 |
+
"100%|████████████████��███████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 20.96it/s]\n"
|
| 256 |
+
]
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"name": "stdout",
|
| 260 |
+
"output_type": "stream",
|
| 261 |
+
"text": [
|
| 262 |
+
"epoch=1: train_ppl=tensor(452658.3750, device='cuda:0') train_epoch_loss=tensor(13.0229, device='cuda:0') eval_ppl=tensor(275088.1875, device='cuda:0') eval_epoch_loss=tensor(12.5248, device='cuda:0')\n"
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"name": "stderr",
|
| 267 |
+
"output_type": "stream",
|
| 268 |
+
"text": [
|
| 269 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.90it/s]\n",
|
| 270 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.41it/s]\n"
|
| 271 |
+
]
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"name": "stdout",
|
| 275 |
+
"output_type": "stream",
|
| 276 |
+
"text": [
|
| 277 |
+
"epoch=2: train_ppl=tensor(199203.3906, device='cuda:0') train_epoch_loss=tensor(12.2021, device='cuda:0') eval_ppl=tensor(143637.0312, device='cuda:0') eval_epoch_loss=tensor(11.8750, device='cuda:0')\n"
|
| 278 |
+
]
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"name": "stderr",
|
| 282 |
+
"output_type": "stream",
|
| 283 |
+
"text": [
|
| 284 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.92it/s]\n",
|
| 285 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.31it/s]\n"
|
| 286 |
+
]
|
| 287 |
+
},
|
| 288 |
+
{
|
| 289 |
+
"name": "stdout",
|
| 290 |
+
"output_type": "stream",
|
| 291 |
+
"text": [
|
| 292 |
+
"epoch=3: train_ppl=tensor(114743.9531, device='cuda:0') train_epoch_loss=tensor(11.6505, device='cuda:0') eval_ppl=tensor(54962., device='cuda:0') eval_epoch_loss=tensor(10.9144, device='cuda:0')\n"
|
| 293 |
+
]
|
| 294 |
+
},
|
| 295 |
+
{
|
| 296 |
+
"name": "stderr",
|
| 297 |
+
"output_type": "stream",
|
| 298 |
+
"text": [
|
| 299 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.81it/s]\n",
|
| 300 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.34it/s]\n"
|
| 301 |
+
]
|
| 302 |
+
},
|
| 303 |
+
{
|
| 304 |
+
"name": "stdout",
|
| 305 |
+
"output_type": "stream",
|
| 306 |
+
"text": [
|
| 307 |
+
"epoch=4: train_ppl=tensor(40786.5977, device='cuda:0') train_epoch_loss=tensor(10.6161, device='cuda:0') eval_ppl=tensor(18342.5430, device='cuda:0') eval_epoch_loss=tensor(9.8170, device='cuda:0')\n"
|
| 308 |
+
]
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"name": "stderr",
|
| 312 |
+
"output_type": "stream",
|
| 313 |
+
"text": [
|
| 314 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.89it/s]\n",
|
| 315 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.34it/s]\n"
|
| 316 |
+
]
|
| 317 |
+
},
|
| 318 |
+
{
|
| 319 |
+
"name": "stdout",
|
| 320 |
+
"output_type": "stream",
|
| 321 |
+
"text": [
|
| 322 |
+
"epoch=5: train_ppl=tensor(14023.0830, device='cuda:0') train_epoch_loss=tensor(9.5485, device='cuda:0') eval_ppl=tensor(6316.8540, device='cuda:0') eval_epoch_loss=tensor(8.7510, device='cuda:0')\n"
|
| 323 |
+
]
|
| 324 |
+
},
|
| 325 |
+
{
|
| 326 |
+
"name": "stderr",
|
| 327 |
+
"output_type": "stream",
|
| 328 |
+
"text": [
|
| 329 |
+
"100%|██████████████████████████████████████████████████████████████████████████████████████████��█| 7/7 [00:00<00:00, 10.84it/s]\n",
|
| 330 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.32it/s]\n"
|
| 331 |
+
]
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"name": "stdout",
|
| 335 |
+
"output_type": "stream",
|
| 336 |
+
"text": [
|
| 337 |
+
"epoch=6: train_ppl=tensor(5635.3262, device='cuda:0') train_epoch_loss=tensor(8.6368, device='cuda:0') eval_ppl=tensor(2476.5776, device='cuda:0') eval_epoch_loss=tensor(7.8146, device='cuda:0')\n"
|
| 338 |
+
]
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"name": "stderr",
|
| 342 |
+
"output_type": "stream",
|
| 343 |
+
"text": [
|
| 344 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.88it/s]\n",
|
| 345 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.30it/s]\n"
|
| 346 |
+
]
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"name": "stdout",
|
| 350 |
+
"output_type": "stream",
|
| 351 |
+
"text": [
|
| 352 |
+
"epoch=7: train_ppl=tensor(1818.4940, device='cuda:0') train_epoch_loss=tensor(7.5058, device='cuda:0') eval_ppl=tensor(934.1146, device='cuda:0') eval_epoch_loss=tensor(6.8396, device='cuda:0')\n"
|
| 353 |
+
]
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"name": "stderr",
|
| 357 |
+
"output_type": "stream",
|
| 358 |
+
"text": [
|
| 359 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.05it/s]\n",
|
| 360 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 18.97it/s]\n"
|
| 361 |
+
]
|
| 362 |
+
},
|
| 363 |
+
{
|
| 364 |
+
"name": "stdout",
|
| 365 |
+
"output_type": "stream",
|
| 366 |
+
"text": [
|
| 367 |
+
"epoch=8: train_ppl=tensor(645.2143, device='cuda:0') train_epoch_loss=tensor(6.4696, device='cuda:0') eval_ppl=tensor(361.9093, device='cuda:0') eval_epoch_loss=tensor(5.8914, device='cuda:0')\n"
|
| 368 |
+
]
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"name": "stderr",
|
| 372 |
+
"output_type": "stream",
|
| 373 |
+
"text": [
|
| 374 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.67it/s]\n",
|
| 375 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 19.12it/s]\n"
|
| 376 |
+
]
|
| 377 |
+
},
|
| 378 |
+
{
|
| 379 |
+
"name": "stdout",
|
| 380 |
+
"output_type": "stream",
|
| 381 |
+
"text": [
|
| 382 |
+
"epoch=9: train_ppl=tensor(293.8047, device='cuda:0') train_epoch_loss=tensor(5.6829, device='cuda:0') eval_ppl=tensor(215.8185, device='cuda:0') eval_epoch_loss=tensor(5.3744, device='cuda:0')\n"
|
| 383 |
+
]
|
| 384 |
+
},
|
| 385 |
+
{
|
| 386 |
+
"name": "stderr",
|
| 387 |
+
"output_type": "stream",
|
| 388 |
+
"text": [
|
| 389 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.54it/s]\n",
|
| 390 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 20.83it/s]\n"
|
| 391 |
+
]
|
| 392 |
+
},
|
| 393 |
+
{
|
| 394 |
+
"name": "stdout",
|
| 395 |
+
"output_type": "stream",
|
| 396 |
+
"text": [
|
| 397 |
+
"epoch=10: train_ppl=tensor(191.2377, device='cuda:0') train_epoch_loss=tensor(5.2535, device='cuda:0') eval_ppl=tensor(177.1512, device='cuda:0') eval_epoch_loss=tensor(5.1770, device='cuda:0')\n"
|
| 398 |
+
]
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"name": "stderr",
|
| 402 |
+
"output_type": "stream",
|
| 403 |
+
"text": [
|
| 404 |
+
"100%|████████████████████████████████████████████████████████████████���███████████████████████████| 7/7 [00:00<00:00, 10.02it/s]\n",
|
| 405 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 18.98it/s]\n"
|
| 406 |
+
]
|
| 407 |
+
},
|
| 408 |
+
{
|
| 409 |
+
"name": "stdout",
|
| 410 |
+
"output_type": "stream",
|
| 411 |
+
"text": [
|
| 412 |
+
"epoch=11: train_ppl=tensor(153.6052, device='cuda:0') train_epoch_loss=tensor(5.0344, device='cuda:0') eval_ppl=tensor(126.6154, device='cuda:0') eval_epoch_loss=tensor(4.8412, device='cuda:0')\n"
|
| 413 |
+
]
|
| 414 |
+
},
|
| 415 |
+
{
|
| 416 |
+
"name": "stderr",
|
| 417 |
+
"output_type": "stream",
|
| 418 |
+
"text": [
|
| 419 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.54it/s]\n",
|
| 420 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 18.78it/s]\n"
|
| 421 |
+
]
|
| 422 |
+
},
|
| 423 |
+
{
|
| 424 |
+
"name": "stdout",
|
| 425 |
+
"output_type": "stream",
|
| 426 |
+
"text": [
|
| 427 |
+
"epoch=12: train_ppl=tensor(122.8925, device='cuda:0') train_epoch_loss=tensor(4.8113, device='cuda:0') eval_ppl=tensor(97.3331, device='cuda:0') eval_epoch_loss=tensor(4.5781, device='cuda:0')\n"
|
| 428 |
+
]
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"name": "stderr",
|
| 432 |
+
"output_type": "stream",
|
| 433 |
+
"text": [
|
| 434 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.66it/s]\n",
|
| 435 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 19.72it/s]\n"
|
| 436 |
+
]
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"name": "stdout",
|
| 440 |
+
"output_type": "stream",
|
| 441 |
+
"text": [
|
| 442 |
+
"epoch=13: train_ppl=tensor(84.8845, device='cuda:0') train_epoch_loss=tensor(4.4413, device='cuda:0') eval_ppl=tensor(70.3213, device='cuda:0') eval_epoch_loss=tensor(4.2531, device='cuda:0')\n"
|
| 443 |
+
]
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"name": "stderr",
|
| 447 |
+
"output_type": "stream",
|
| 448 |
+
"text": [
|
| 449 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 6.73it/s]\n",
|
| 450 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 16.07it/s]\n"
|
| 451 |
+
]
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"name": "stdout",
|
| 455 |
+
"output_type": "stream",
|
| 456 |
+
"text": [
|
| 457 |
+
"epoch=14: train_ppl=tensor(64.6705, device='cuda:0') train_epoch_loss=tensor(4.1693, device='cuda:0') eval_ppl=tensor(50.4688, device='cuda:0') eval_epoch_loss=tensor(3.9214, device='cuda:0')\n"
|
| 458 |
+
]
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"name": "stderr",
|
| 462 |
+
"output_type": "stream",
|
| 463 |
+
"text": [
|
| 464 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.41it/s]\n",
|
| 465 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.63it/s]\n"
|
| 466 |
+
]
|
| 467 |
+
},
|
| 468 |
+
{
|
| 469 |
+
"name": "stdout",
|
| 470 |
+
"output_type": "stream",
|
| 471 |
+
"text": [
|
| 472 |
+
"epoch=15: train_ppl=tensor(44.2937, device='cuda:0') train_epoch_loss=tensor(3.7908, device='cuda:0') eval_ppl=tensor(34.8210, device='cuda:0') eval_epoch_loss=tensor(3.5502, device='cuda:0')\n"
|
| 473 |
+
]
|
| 474 |
+
},
|
| 475 |
+
{
|
| 476 |
+
"name": "stderr",
|
| 477 |
+
"output_type": "stream",
|
| 478 |
+
"text": [
|
| 479 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.31it/s]\n",
|
| 480 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.67it/s]\n"
|
| 481 |
+
]
|
| 482 |
+
},
|
| 483 |
+
{
|
| 484 |
+
"name": "stdout",
|
| 485 |
+
"output_type": "stream",
|
| 486 |
+
"text": [
|
| 487 |
+
"epoch=16: train_ppl=tensor(30.0995, device='cuda:0') train_epoch_loss=tensor(3.4045, device='cuda:0') eval_ppl=tensor(24.7703, device='cuda:0') eval_epoch_loss=tensor(3.2096, device='cuda:0')\n"
|
| 488 |
+
]
|
| 489 |
+
},
|
| 490 |
+
{
|
| 491 |
+
"name": "stderr",
|
| 492 |
+
"output_type": "stream",
|
| 493 |
+
"text": [
|
| 494 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.31it/s]\n",
|
| 495 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.59it/s]\n"
|
| 496 |
+
]
|
| 497 |
+
},
|
| 498 |
+
{
|
| 499 |
+
"name": "stdout",
|
| 500 |
+
"output_type": "stream",
|
| 501 |
+
"text": [
|
| 502 |
+
"epoch=17: train_ppl=tensor(23.3086, device='cuda:0') train_epoch_loss=tensor(3.1488, device='cuda:0') eval_ppl=tensor(20.8131, device='cuda:0') eval_epoch_loss=tensor(3.0356, device='cuda:0')\n"
|
| 503 |
+
]
|
| 504 |
+
},
|
| 505 |
+
{
|
| 506 |
+
"name": "stderr",
|
| 507 |
+
"output_type": "stream",
|
| 508 |
+
"text": [
|
| 509 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.29it/s]\n",
|
| 510 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 16.04it/s]\n"
|
| 511 |
+
]
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"name": "stdout",
|
| 515 |
+
"output_type": "stream",
|
| 516 |
+
"text": [
|
| 517 |
+
"epoch=18: train_ppl=tensor(16.4479, device='cuda:0') train_epoch_loss=tensor(2.8002, device='cuda:0') eval_ppl=tensor(12.0876, device='cuda:0') eval_epoch_loss=tensor(2.4922, device='cuda:0')\n"
|
| 518 |
+
]
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"name": "stderr",
|
| 522 |
+
"output_type": "stream",
|
| 523 |
+
"text": [
|
| 524 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.37it/s]\n",
|
| 525 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.37it/s]\n"
|
| 526 |
+
]
|
| 527 |
+
},
|
| 528 |
+
{
|
| 529 |
+
"name": "stdout",
|
| 530 |
+
"output_type": "stream",
|
| 531 |
+
"text": [
|
| 532 |
+
"epoch=19: train_ppl=tensor(11.1977, device='cuda:0') train_epoch_loss=tensor(2.4157, device='cuda:0') eval_ppl=tensor(9.0399, device='cuda:0') eval_epoch_loss=tensor(2.2016, device='cuda:0')\n"
|
| 533 |
+
]
|
| 534 |
+
},
|
| 535 |
+
{
|
| 536 |
+
"name": "stderr",
|
| 537 |
+
"output_type": "stream",
|
| 538 |
+
"text": [
|
| 539 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.23it/s]\n",
|
| 540 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 17.29it/s]\n"
|
| 541 |
+
]
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"name": "stdout",
|
| 545 |
+
"output_type": "stream",
|
| 546 |
+
"text": [
|
| 547 |
+
"epoch=20: train_ppl=tensor(8.1847, device='cuda:0') train_epoch_loss=tensor(2.1023, device='cuda:0') eval_ppl=tensor(6.7486, device='cuda:0') eval_epoch_loss=tensor(1.9093, device='cuda:0')\n"
|
| 548 |
+
]
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"name": "stderr",
|
| 552 |
+
"output_type": "stream",
|
| 553 |
+
"text": [
|
| 554 |
+
"100%|█████████████████��██████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.30it/s]\n",
|
| 555 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.58it/s]\n"
|
| 556 |
+
]
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"name": "stdout",
|
| 560 |
+
"output_type": "stream",
|
| 561 |
+
"text": [
|
| 562 |
+
"epoch=21: train_ppl=tensor(6.1145, device='cuda:0') train_epoch_loss=tensor(1.8107, device='cuda:0') eval_ppl=tensor(5.5931, device='cuda:0') eval_epoch_loss=tensor(1.7215, device='cuda:0')\n"
|
| 563 |
+
]
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"name": "stderr",
|
| 567 |
+
"output_type": "stream",
|
| 568 |
+
"text": [
|
| 569 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.34it/s]\n",
|
| 570 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.36it/s]\n"
|
| 571 |
+
]
|
| 572 |
+
},
|
| 573 |
+
{
|
| 574 |
+
"name": "stdout",
|
| 575 |
+
"output_type": "stream",
|
| 576 |
+
"text": [
|
| 577 |
+
"epoch=22: train_ppl=tensor(5.2963, device='cuda:0') train_epoch_loss=tensor(1.6670, device='cuda:0') eval_ppl=tensor(5.0573, device='cuda:0') eval_epoch_loss=tensor(1.6208, device='cuda:0')\n"
|
| 578 |
+
]
|
| 579 |
+
},
|
| 580 |
+
{
|
| 581 |
+
"name": "stderr",
|
| 582 |
+
"output_type": "stream",
|
| 583 |
+
"text": [
|
| 584 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.84it/s]\n",
|
| 585 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.26it/s]\n"
|
| 586 |
+
]
|
| 587 |
+
},
|
| 588 |
+
{
|
| 589 |
+
"name": "stdout",
|
| 590 |
+
"output_type": "stream",
|
| 591 |
+
"text": [
|
| 592 |
+
"epoch=23: train_ppl=tensor(4.7485, device='cuda:0') train_epoch_loss=tensor(1.5578, device='cuda:0') eval_ppl=tensor(3.6277, device='cuda:0') eval_epoch_loss=tensor(1.2886, device='cuda:0')\n"
|
| 593 |
+
]
|
| 594 |
+
},
|
| 595 |
+
{
|
| 596 |
+
"name": "stderr",
|
| 597 |
+
"output_type": "stream",
|
| 598 |
+
"text": [
|
| 599 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.84it/s]\n",
|
| 600 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.31it/s]\n"
|
| 601 |
+
]
|
| 602 |
+
},
|
| 603 |
+
{
|
| 604 |
+
"name": "stdout",
|
| 605 |
+
"output_type": "stream",
|
| 606 |
+
"text": [
|
| 607 |
+
"epoch=24: train_ppl=tensor(3.4080, device='cuda:0') train_epoch_loss=tensor(1.2261, device='cuda:0') eval_ppl=tensor(3.0467, device='cuda:0') eval_epoch_loss=tensor(1.1141, device='cuda:0')\n"
|
| 608 |
+
]
|
| 609 |
+
},
|
| 610 |
+
{
|
| 611 |
+
"name": "stderr",
|
| 612 |
+
"output_type": "stream",
|
| 613 |
+
"text": [
|
| 614 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.88it/s]\n",
|
| 615 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.25it/s]\n"
|
| 616 |
+
]
|
| 617 |
+
},
|
| 618 |
+
{
|
| 619 |
+
"name": "stdout",
|
| 620 |
+
"output_type": "stream",
|
| 621 |
+
"text": [
|
| 622 |
+
"epoch=25: train_ppl=tensor(3.3052, device='cuda:0') train_epoch_loss=tensor(1.1955, device='cuda:0') eval_ppl=tensor(2.7784, device='cuda:0') eval_epoch_loss=tensor(1.0219, device='cuda:0')\n"
|
| 623 |
+
]
|
| 624 |
+
},
|
| 625 |
+
{
|
| 626 |
+
"name": "stderr",
|
| 627 |
+
"output_type": "stream",
|
| 628 |
+
"text": [
|
| 629 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.86it/s]\n",
|
| 630 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.22it/s]\n"
|
| 631 |
+
]
|
| 632 |
+
},
|
| 633 |
+
{
|
| 634 |
+
"name": "stdout",
|
| 635 |
+
"output_type": "stream",
|
| 636 |
+
"text": [
|
| 637 |
+
"epoch=26: train_ppl=tensor(2.9487, device='cuda:0') train_epoch_loss=tensor(1.0814, device='cuda:0') eval_ppl=tensor(2.9471, device='cuda:0') eval_epoch_loss=tensor(1.0808, device='cuda:0')\n"
|
| 638 |
+
]
|
| 639 |
+
},
|
| 640 |
+
{
|
| 641 |
+
"name": "stderr",
|
| 642 |
+
"output_type": "stream",
|
| 643 |
+
"text": [
|
| 644 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.85it/s]\n",
|
| 645 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.25it/s]\n"
|
| 646 |
+
]
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"name": "stdout",
|
| 650 |
+
"output_type": "stream",
|
| 651 |
+
"text": [
|
| 652 |
+
"epoch=27: train_ppl=tensor(2.8738, device='cuda:0') train_epoch_loss=tensor(1.0556, device='cuda:0') eval_ppl=tensor(2.5801, device='cuda:0') eval_epoch_loss=tensor(0.9478, device='cuda:0')\n"
|
| 653 |
+
]
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"name": "stderr",
|
| 657 |
+
"output_type": "stream",
|
| 658 |
+
"text": [
|
| 659 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.84it/s]\n",
|
| 660 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.28it/s]\n"
|
| 661 |
+
]
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"name": "stdout",
|
| 665 |
+
"output_type": "stream",
|
| 666 |
+
"text": [
|
| 667 |
+
"epoch=28: train_ppl=tensor(2.3241, device='cuda:0') train_epoch_loss=tensor(0.8433, device='cuda:0') eval_ppl=tensor(2.2198, device='cuda:0') eval_epoch_loss=tensor(0.7974, device='cuda:0')\n"
|
| 668 |
+
]
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"name": "stderr",
|
| 672 |
+
"output_type": "stream",
|
| 673 |
+
"text": [
|
| 674 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.84it/s]\n",
|
| 675 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 20.89it/s]\n"
|
| 676 |
+
]
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"name": "stdout",
|
| 680 |
+
"output_type": "stream",
|
| 681 |
+
"text": [
|
| 682 |
+
"epoch=29: train_ppl=tensor(2.0376, device='cuda:0') train_epoch_loss=tensor(0.7118, device='cuda:0') eval_ppl=tensor(1.8572, device='cuda:0') eval_epoch_loss=tensor(0.6191, device='cuda:0')\n"
|
| 683 |
+
]
|
| 684 |
+
},
|
| 685 |
+
{
|
| 686 |
+
"name": "stderr",
|
| 687 |
+
"output_type": "stream",
|
| 688 |
+
"text": [
|
| 689 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.76it/s]\n",
|
| 690 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 18.83it/s]\n"
|
| 691 |
+
]
|
| 692 |
+
},
|
| 693 |
+
{
|
| 694 |
+
"name": "stdout",
|
| 695 |
+
"output_type": "stream",
|
| 696 |
+
"text": [
|
| 697 |
+
"epoch=30: train_ppl=tensor(1.8301, device='cuda:0') train_epoch_loss=tensor(0.6044, device='cuda:0') eval_ppl=tensor(1.8864, device='cuda:0') eval_epoch_loss=tensor(0.6347, device='cuda:0')\n"
|
| 698 |
+
]
|
| 699 |
+
},
|
| 700 |
+
{
|
| 701 |
+
"name": "stderr",
|
| 702 |
+
"output_type": "stream",
|
| 703 |
+
"text": [
|
| 704 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.80it/s]\n",
|
| 705 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 19.81it/s]\n"
|
| 706 |
+
]
|
| 707 |
+
},
|
| 708 |
+
{
|
| 709 |
+
"name": "stdout",
|
| 710 |
+
"output_type": "stream",
|
| 711 |
+
"text": [
|
| 712 |
+
"epoch=31: train_ppl=tensor(1.7301, device='cuda:0') train_epoch_loss=tensor(0.5482, device='cuda:0') eval_ppl=tensor(1.6340, device='cuda:0') eval_epoch_loss=tensor(0.4910, device='cuda:0')\n"
|
| 713 |
+
]
|
| 714 |
+
},
|
| 715 |
+
{
|
| 716 |
+
"name": "stderr",
|
| 717 |
+
"output_type": "stream",
|
| 718 |
+
"text": [
|
| 719 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.60it/s]\n",
|
| 720 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 19.11it/s]\n"
|
| 721 |
+
]
|
| 722 |
+
},
|
| 723 |
+
{
|
| 724 |
+
"name": "stdout",
|
| 725 |
+
"output_type": "stream",
|
| 726 |
+
"text": [
|
| 727 |
+
"epoch=32: train_ppl=tensor(1.5842, device='cuda:0') train_epoch_loss=tensor(0.4601, device='cuda:0') eval_ppl=tensor(1.6179, device='cuda:0') eval_epoch_loss=tensor(0.4811, device='cuda:0')\n"
|
| 728 |
+
]
|
| 729 |
+
},
|
| 730 |
+
{
|
| 731 |
+
"name": "stderr",
|
| 732 |
+
"output_type": "stream",
|
| 733 |
+
"text": [
|
| 734 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.11it/s]\n",
|
| 735 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 18.35it/s]\n"
|
| 736 |
+
]
|
| 737 |
+
},
|
| 738 |
+
{
|
| 739 |
+
"name": "stdout",
|
| 740 |
+
"output_type": "stream",
|
| 741 |
+
"text": [
|
| 742 |
+
"epoch=33: train_ppl=tensor(1.5193, device='cuda:0') train_epoch_loss=tensor(0.4183, device='cuda:0') eval_ppl=tensor(1.5543, device='cuda:0') eval_epoch_loss=tensor(0.4410, device='cuda:0')\n"
|
| 743 |
+
]
|
| 744 |
+
},
|
| 745 |
+
{
|
| 746 |
+
"name": "stderr",
|
| 747 |
+
"output_type": "stream",
|
| 748 |
+
"text": [
|
| 749 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.59it/s]\n",
|
| 750 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 18.60it/s]\n"
|
| 751 |
+
]
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"name": "stdout",
|
| 755 |
+
"output_type": "stream",
|
| 756 |
+
"text": [
|
| 757 |
+
"epoch=34: train_ppl=tensor(1.5402, device='cuda:0') train_epoch_loss=tensor(0.4319, device='cuda:0') eval_ppl=tensor(1.4924, device='cuda:0') eval_epoch_loss=tensor(0.4004, device='cuda:0')\n"
|
| 758 |
+
]
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"name": "stderr",
|
| 762 |
+
"output_type": "stream",
|
| 763 |
+
"text": [
|
| 764 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 9.80it/s]\n",
|
| 765 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 19.63it/s]\n"
|
| 766 |
+
]
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"name": "stdout",
|
| 770 |
+
"output_type": "stream",
|
| 771 |
+
"text": [
|
| 772 |
+
"epoch=35: train_ppl=tensor(1.4410, device='cuda:0') train_epoch_loss=tensor(0.3654, device='cuda:0') eval_ppl=tensor(1.3888, device='cuda:0') eval_epoch_loss=tensor(0.3284, device='cuda:0')\n"
|
| 773 |
+
]
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"name": "stderr",
|
| 777 |
+
"output_type": "stream",
|
| 778 |
+
"text": [
|
| 779 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 6.60it/s]\n",
|
| 780 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.36it/s]\n"
|
| 781 |
+
]
|
| 782 |
+
},
|
| 783 |
+
{
|
| 784 |
+
"name": "stdout",
|
| 785 |
+
"output_type": "stream",
|
| 786 |
+
"text": [
|
| 787 |
+
"epoch=36: train_ppl=tensor(1.3675, device='cuda:0') train_epoch_loss=tensor(0.3130, device='cuda:0') eval_ppl=tensor(1.4001, device='cuda:0') eval_epoch_loss=tensor(0.3366, device='cuda:0')\n"
|
| 788 |
+
]
|
| 789 |
+
},
|
| 790 |
+
{
|
| 791 |
+
"name": "stderr",
|
| 792 |
+
"output_type": "stream",
|
| 793 |
+
"text": [
|
| 794 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.40it/s]\n",
|
| 795 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.58it/s]\n"
|
| 796 |
+
]
|
| 797 |
+
},
|
| 798 |
+
{
|
| 799 |
+
"name": "stdout",
|
| 800 |
+
"output_type": "stream",
|
| 801 |
+
"text": [
|
| 802 |
+
"epoch=37: train_ppl=tensor(1.4197, device='cuda:0') train_epoch_loss=tensor(0.3505, device='cuda:0') eval_ppl=tensor(1.3214, device='cuda:0') eval_epoch_loss=tensor(0.2787, device='cuda:0')\n"
|
| 803 |
+
]
|
| 804 |
+
},
|
| 805 |
+
{
|
| 806 |
+
"name": "stderr",
|
| 807 |
+
"output_type": "stream",
|
| 808 |
+
"text": [
|
| 809 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.27it/s]\n",
|
| 810 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.56it/s]\n"
|
| 811 |
+
]
|
| 812 |
+
},
|
| 813 |
+
{
|
| 814 |
+
"name": "stdout",
|
| 815 |
+
"output_type": "stream",
|
| 816 |
+
"text": [
|
| 817 |
+
"epoch=38: train_ppl=tensor(1.3855, device='cuda:0') train_epoch_loss=tensor(0.3261, device='cuda:0') eval_ppl=tensor(1.3501, device='cuda:0') eval_epoch_loss=tensor(0.3001, device='cuda:0')\n"
|
| 818 |
+
]
|
| 819 |
+
},
|
| 820 |
+
{
|
| 821 |
+
"name": "stderr",
|
| 822 |
+
"output_type": "stream",
|
| 823 |
+
"text": [
|
| 824 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.25it/s]\n",
|
| 825 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.57it/s]\n"
|
| 826 |
+
]
|
| 827 |
+
},
|
| 828 |
+
{
|
| 829 |
+
"name": "stdout",
|
| 830 |
+
"output_type": "stream",
|
| 831 |
+
"text": [
|
| 832 |
+
"epoch=39: train_ppl=tensor(1.3643, device='cuda:0') train_epoch_loss=tensor(0.3107, device='cuda:0') eval_ppl=tensor(1.3549, device='cuda:0') eval_epoch_loss=tensor(0.3037, device='cuda:0')\n"
|
| 833 |
+
]
|
| 834 |
+
},
|
| 835 |
+
{
|
| 836 |
+
"name": "stderr",
|
| 837 |
+
"output_type": "stream",
|
| 838 |
+
"text": [
|
| 839 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.28it/s]\n",
|
| 840 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.41it/s]\n"
|
| 841 |
+
]
|
| 842 |
+
},
|
| 843 |
+
{
|
| 844 |
+
"name": "stdout",
|
| 845 |
+
"output_type": "stream",
|
| 846 |
+
"text": [
|
| 847 |
+
"epoch=40: train_ppl=tensor(1.3093, device='cuda:0') train_epoch_loss=tensor(0.2695, device='cuda:0') eval_ppl=tensor(1.3233, device='cuda:0') eval_epoch_loss=tensor(0.2801, device='cuda:0')\n"
|
| 848 |
+
]
|
| 849 |
+
},
|
| 850 |
+
{
|
| 851 |
+
"name": "stderr",
|
| 852 |
+
"output_type": "stream",
|
| 853 |
+
"text": [
|
| 854 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.24it/s]\n",
|
| 855 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.51it/s]\n"
|
| 856 |
+
]
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"name": "stdout",
|
| 860 |
+
"output_type": "stream",
|
| 861 |
+
"text": [
|
| 862 |
+
"epoch=41: train_ppl=tensor(1.3108, device='cuda:0') train_epoch_loss=tensor(0.2706, device='cuda:0') eval_ppl=tensor(1.3440, device='cuda:0') eval_epoch_loss=tensor(0.2957, device='cuda:0')\n"
|
| 863 |
+
]
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"name": "stderr",
|
| 867 |
+
"output_type": "stream",
|
| 868 |
+
"text": [
|
| 869 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.78it/s]\n",
|
| 870 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.61it/s]\n"
|
| 871 |
+
]
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"name": "stdout",
|
| 875 |
+
"output_type": "stream",
|
| 876 |
+
"text": [
|
| 877 |
+
"epoch=42: train_ppl=tensor(1.2944, device='cuda:0') train_epoch_loss=tensor(0.2581, device='cuda:0') eval_ppl=tensor(1.2711, device='cuda:0') eval_epoch_loss=tensor(0.2399, device='cuda:0')\n"
|
| 878 |
+
]
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"name": "stderr",
|
| 882 |
+
"output_type": "stream",
|
| 883 |
+
"text": [
|
| 884 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 8.29it/s]\n",
|
| 885 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 15.56it/s]\n"
|
| 886 |
+
]
|
| 887 |
+
},
|
| 888 |
+
{
|
| 889 |
+
"name": "stdout",
|
| 890 |
+
"output_type": "stream",
|
| 891 |
+
"text": [
|
| 892 |
+
"epoch=43: train_ppl=tensor(1.2616, device='cuda:0') train_epoch_loss=tensor(0.2323, device='cuda:0') eval_ppl=tensor(1.2449, device='cuda:0') eval_epoch_loss=tensor(0.2190, device='cuda:0')\n"
|
| 893 |
+
]
|
| 894 |
+
},
|
| 895 |
+
{
|
| 896 |
+
"name": "stderr",
|
| 897 |
+
"output_type": "stream",
|
| 898 |
+
"text": [
|
| 899 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.85it/s]\n",
|
| 900 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.27it/s]\n"
|
| 901 |
+
]
|
| 902 |
+
},
|
| 903 |
+
{
|
| 904 |
+
"name": "stdout",
|
| 905 |
+
"output_type": "stream",
|
| 906 |
+
"text": [
|
| 907 |
+
"epoch=44: train_ppl=tensor(1.2478, device='cuda:0') train_epoch_loss=tensor(0.2214, device='cuda:0') eval_ppl=tensor(1.2202, device='cuda:0') eval_epoch_loss=tensor(0.1990, device='cuda:0')\n"
|
| 908 |
+
]
|
| 909 |
+
},
|
| 910 |
+
{
|
| 911 |
+
"name": "stderr",
|
| 912 |
+
"output_type": "stream",
|
| 913 |
+
"text": [
|
| 914 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.85it/s]\n",
|
| 915 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.31it/s]\n"
|
| 916 |
+
]
|
| 917 |
+
},
|
| 918 |
+
{
|
| 919 |
+
"name": "stdout",
|
| 920 |
+
"output_type": "stream",
|
| 921 |
+
"text": [
|
| 922 |
+
"epoch=45: train_ppl=tensor(1.2350, device='cuda:0') train_epoch_loss=tensor(0.2111, device='cuda:0') eval_ppl=tensor(1.2180, device='cuda:0') eval_epoch_loss=tensor(0.1972, device='cuda:0')\n"
|
| 923 |
+
]
|
| 924 |
+
},
|
| 925 |
+
{
|
| 926 |
+
"name": "stderr",
|
| 927 |
+
"output_type": "stream",
|
| 928 |
+
"text": [
|
| 929 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.86it/s]\n",
|
| 930 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.33it/s]\n"
|
| 931 |
+
]
|
| 932 |
+
},
|
| 933 |
+
{
|
| 934 |
+
"name": "stdout",
|
| 935 |
+
"output_type": "stream",
|
| 936 |
+
"text": [
|
| 937 |
+
"epoch=46: train_ppl=tensor(1.2277, device='cuda:0') train_epoch_loss=tensor(0.2052, device='cuda:0') eval_ppl=tensor(1.2077, device='cuda:0') eval_epoch_loss=tensor(0.1887, device='cuda:0')\n"
|
| 938 |
+
]
|
| 939 |
+
},
|
| 940 |
+
{
|
| 941 |
+
"name": "stderr",
|
| 942 |
+
"output_type": "stream",
|
| 943 |
+
"text": [
|
| 944 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.87it/s]\n",
|
| 945 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.35it/s]\n"
|
| 946 |
+
]
|
| 947 |
+
},
|
| 948 |
+
{
|
| 949 |
+
"name": "stdout",
|
| 950 |
+
"output_type": "stream",
|
| 951 |
+
"text": [
|
| 952 |
+
"epoch=47: train_ppl=tensor(1.2037, device='cuda:0') train_epoch_loss=tensor(0.1854, device='cuda:0') eval_ppl=tensor(1.2041, device='cuda:0') eval_epoch_loss=tensor(0.1857, device='cuda:0')\n"
|
| 953 |
+
]
|
| 954 |
+
},
|
| 955 |
+
{
|
| 956 |
+
"name": "stderr",
|
| 957 |
+
"output_type": "stream",
|
| 958 |
+
"text": [
|
| 959 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.83it/s]\n",
|
| 960 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.29it/s]\n"
|
| 961 |
+
]
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"name": "stdout",
|
| 965 |
+
"output_type": "stream",
|
| 966 |
+
"text": [
|
| 967 |
+
"epoch=48: train_ppl=tensor(1.2026, device='cuda:0') train_epoch_loss=tensor(0.1845, device='cuda:0') eval_ppl=tensor(1.1982, device='cuda:0') eval_epoch_loss=tensor(0.1808, device='cuda:0')\n"
|
| 968 |
+
]
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"name": "stderr",
|
| 972 |
+
"output_type": "stream",
|
| 973 |
+
"text": [
|
| 974 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 10.86it/s]\n",
|
| 975 |
+
"100%|████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00, 21.35it/s]"
|
| 976 |
+
]
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"name": "stdout",
|
| 980 |
+
"output_type": "stream",
|
| 981 |
+
"text": [
|
| 982 |
+
"epoch=49: train_ppl=tensor(1.2005, device='cuda:0') train_epoch_loss=tensor(0.1827, device='cuda:0') eval_ppl=tensor(1.1968, device='cuda:0') eval_epoch_loss=tensor(0.1796, device='cuda:0')\n"
|
| 983 |
+
]
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"name": "stderr",
|
| 987 |
+
"output_type": "stream",
|
| 988 |
+
"text": [
|
| 989 |
+
"\n"
|
| 990 |
+
]
|
| 991 |
+
}
|
| 992 |
+
],
|
| 993 |
+
"source": [
|
| 994 |
+
"# training and evaluation\n",
|
| 995 |
+
"model = model.to(device)\n",
|
| 996 |
+
"\n",
|
| 997 |
+
"for epoch in range(num_epochs):\n",
|
| 998 |
+
" model.train()\n",
|
| 999 |
+
" total_loss = 0\n",
|
| 1000 |
+
" for step, batch in enumerate(tqdm(train_dataloader)):\n",
|
| 1001 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 1002 |
+
" # print(batch)\n",
|
| 1003 |
+
" # print(batch[\"input_ids\"].shape)\n",
|
| 1004 |
+
" outputs = model(**batch)\n",
|
| 1005 |
+
" loss = outputs.loss\n",
|
| 1006 |
+
" total_loss += loss.detach().float()\n",
|
| 1007 |
+
" loss.backward()\n",
|
| 1008 |
+
" optimizer.step()\n",
|
| 1009 |
+
" lr_scheduler.step()\n",
|
| 1010 |
+
" optimizer.zero_grad()\n",
|
| 1011 |
+
"\n",
|
| 1012 |
+
" model.eval()\n",
|
| 1013 |
+
" eval_loss = 0\n",
|
| 1014 |
+
" eval_preds = []\n",
|
| 1015 |
+
" for step, batch in enumerate(tqdm(eval_dataloader)):\n",
|
| 1016 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 1017 |
+
" with torch.no_grad():\n",
|
| 1018 |
+
" outputs = model(**batch)\n",
|
| 1019 |
+
" loss = outputs.loss\n",
|
| 1020 |
+
" eval_loss += loss.detach().float()\n",
|
| 1021 |
+
" eval_preds.extend(\n",
|
| 1022 |
+
" tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)\n",
|
| 1023 |
+
" )\n",
|
| 1024 |
+
"\n",
|
| 1025 |
+
" eval_epoch_loss = eval_loss / len(eval_dataloader)\n",
|
| 1026 |
+
" eval_ppl = torch.exp(eval_epoch_loss)\n",
|
| 1027 |
+
" train_epoch_loss = total_loss / len(train_dataloader)\n",
|
| 1028 |
+
" train_ppl = torch.exp(train_epoch_loss)\n",
|
| 1029 |
+
" print(f\"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}\")"
|
| 1030 |
+
]
|
| 1031 |
+
},
|
| 1032 |
+
{
|
| 1033 |
+
"cell_type": "code",
|
| 1034 |
+
"execution_count": 29,
|
| 1035 |
+
"id": "53752a7b",
|
| 1036 |
+
"metadata": {},
|
| 1037 |
+
"outputs": [
|
| 1038 |
+
{
|
| 1039 |
+
"name": "stdout",
|
| 1040 |
+
"output_type": "stream",
|
| 1041 |
+
"text": [
|
| 1042 |
+
"@TommyHilfiger Dramatic shopping exp. ordered 6 jeans same size (30/32) 2 fits / 2 too large / 2 too slim : same brand > different sizing\n",
|
| 1043 |
+
"{'input_ids': tensor([[227985, 5484, 915, 2566, 226154, 126015, 5385, 259, 239364,\n",
|
| 1044 |
+
" 3396, 70823, 5853, 17, 57247, 1231, 191040, 5025, 7869,\n",
|
| 1045 |
+
" 375, 2324, 149349, 12, 415, 122321, 897, 415, 10136,\n",
|
| 1046 |
+
" 10021, 897, 415, 10136, 6497, 381, 915, 5025, 51950,\n",
|
| 1047 |
+
" 66869, 5955, 272, 20311, 77658, 915, 210]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
| 1048 |
+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
| 1049 |
+
"tensor([[227985, 5484, 915, 2566, 226154, 126015, 5385, 259, 239364,\n",
|
| 1050 |
+
" 3396, 70823, 5853, 17, 57247, 1231, 191040, 5025, 7869,\n",
|
| 1051 |
+
" 375, 2324, 149349, 12, 415, 122321, 897, 415, 10136,\n",
|
| 1052 |
+
" 10021, 897, 415, 10136, 6497, 381, 915, 5025, 51950,\n",
|
| 1053 |
+
" 66869, 5955, 272, 20311, 77658, 915, 210, 16449, 5952,\n",
|
| 1054 |
+
" 3]], device='cuda:0')\n",
|
| 1055 |
+
"['Tweet text : @TommyHilfiger Dramatic shopping exp. ordered 6 jeans same size (30/32) 2 fits / 2 too large / 2 too slim : same brand > different sizing Label : complaint']\n"
|
| 1056 |
+
]
|
| 1057 |
+
}
|
| 1058 |
+
],
|
| 1059 |
+
"source": [
|
| 1060 |
+
"model.eval()\n",
|
| 1061 |
+
"i = 33\n",
|
| 1062 |
+
"inputs = tokenizer(f'{text_column} : {dataset[\"test\"][i][\"Tweet text\"]} Label : ', return_tensors=\"pt\")\n",
|
| 1063 |
+
"print(dataset[\"test\"][i][\"Tweet text\"])\n",
|
| 1064 |
+
"print(inputs)\n",
|
| 1065 |
+
"\n",
|
| 1066 |
+
"with torch.no_grad():\n",
|
| 1067 |
+
" inputs = {k: v.to(device) for k, v in inputs.items()}\n",
|
| 1068 |
+
" outputs = model.generate(\n",
|
| 1069 |
+
" input_ids=inputs[\"input_ids\"], attention_mask=inputs[\"attention_mask\"], max_new_tokens=10, eos_token_id=3\n",
|
| 1070 |
+
" )\n",
|
| 1071 |
+
" print(outputs)\n",
|
| 1072 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
| 1073 |
+
]
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"cell_type": "markdown",
|
| 1077 |
+
"id": "c8f35152",
|
| 1078 |
+
"metadata": {},
|
| 1079 |
+
"source": [
|
| 1080 |
+
"You can push model to hub or save model locally. \n",
|
| 1081 |
+
"\n",
|
| 1082 |
+
"- Option1: Pushing the model to Hugging Face Hub\n",
|
| 1083 |
+
"```python\n",
|
| 1084 |
+
"model.push_to_hub(\n",
|
| 1085 |
+
" f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\".replace(\"/\", \"_\"),\n",
|
| 1086 |
+
" token = \"hf_...\"\n",
|
| 1087 |
+
")\n",
|
| 1088 |
+
"```\n",
|
| 1089 |
+
"token (`bool` or `str`, *optional*):\n",
|
| 1090 |
+
" `token` is to be used for HTTP Bearer authorization when accessing remote files. If `True`, will use the token generated\n",
|
| 1091 |
+
" when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url`\n",
|
| 1092 |
+
" is not specified.\n",
|
| 1093 |
+
" Or you can get your token from https://huggingface.co/settings/token\n",
|
| 1094 |
+
"```\n",
|
| 1095 |
+
"- Or save model locally\n",
|
| 1096 |
+
"```python\n",
|
| 1097 |
+
"peft_model_id = f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\".replace(\"/\", \"_\")\n",
|
| 1098 |
+
"model.save_pretrained(peft_model_id)\n",
|
| 1099 |
+
"```"
|
| 1100 |
+
]
|
| 1101 |
+
},
|
| 1102 |
+
{
|
| 1103 |
+
"cell_type": "code",
|
| 1104 |
+
"execution_count": 12,
|
| 1105 |
+
"id": "d8ba1f8c",
|
| 1106 |
+
"metadata": {},
|
| 1107 |
+
"outputs": [],
|
| 1108 |
+
"source": [
|
| 1109 |
+
"# saving model\n",
|
| 1110 |
+
"peft_model_id = f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\".replace(\n",
|
| 1111 |
+
" \"/\", \"_\"\n",
|
| 1112 |
+
")\n",
|
| 1113 |
+
"model.save_pretrained(peft_model_id)"
|
| 1114 |
+
]
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"cell_type": "code",
|
| 1118 |
+
"execution_count": 13,
|
| 1119 |
+
"id": "4928c7f1",
|
| 1120 |
+
"metadata": {},
|
| 1121 |
+
"outputs": [
|
| 1122 |
+
{
|
| 1123 |
+
"name": "stdout",
|
| 1124 |
+
"output_type": "stream",
|
| 1125 |
+
"text": [
|
| 1126 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
| 1127 |
+
"To disable this warning, you can either:\n",
|
| 1128 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
| 1129 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
|
| 1130 |
+
"36K\tbigscience/bloomz-560m_PROMPT_TUNING_CAUSAL_LM/adapter_model.bin\n"
|
| 1131 |
+
]
|
| 1132 |
+
}
|
| 1133 |
+
],
|
| 1134 |
+
"source": [
|
| 1135 |
+
"ckpt = f\"{peft_model_id}/adapter_model.bin\"\n",
|
| 1136 |
+
"!du -h $ckpt"
|
| 1137 |
+
]
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"cell_type": "code",
|
| 1141 |
+
"execution_count": 15,
|
| 1142 |
+
"id": "4d9476e1",
|
| 1143 |
+
"metadata": {},
|
| 1144 |
+
"outputs": [],
|
| 1145 |
+
"source": [
|
| 1146 |
+
"from peft import PeftModel, PeftConfig\n",
|
| 1147 |
+
"\n",
|
| 1148 |
+
"peft_model_id = f\"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}\".replace(\n",
|
| 1149 |
+
" \"/\", \"_\"\n",
|
| 1150 |
+
")\n",
|
| 1151 |
+
"\n",
|
| 1152 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
| 1153 |
+
"model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)\n",
|
| 1154 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)"
|
| 1155 |
+
]
|
| 1156 |
+
},
|
| 1157 |
+
{
|
| 1158 |
+
"cell_type": "code",
|
| 1159 |
+
"execution_count": 33,
|
| 1160 |
+
"id": "ebe174a6",
|
| 1161 |
+
"metadata": {},
|
| 1162 |
+
"outputs": [
|
| 1163 |
+
{
|
| 1164 |
+
"name": "stdout",
|
| 1165 |
+
"output_type": "stream",
|
| 1166 |
+
"text": [
|
| 1167 |
+
"@greateranglia Ok thanks...\n",
|
| 1168 |
+
"{'input_ids': tensor([[227985, 5484, 915, 2566, 14173, 2960, 29906, 387, 20706,\n",
|
| 1169 |
+
" 49337, 1369, 77658, 915, 210]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
|
| 1170 |
+
"tensor([[227985, 5484, 915, 2566, 14173, 2960, 29906, 387, 20706,\n",
|
| 1171 |
+
" 49337, 1369, 77658, 915, 210, 1936, 106863, 3]],\n",
|
| 1172 |
+
" device='cuda:0')\n",
|
| 1173 |
+
"['Tweet text : @greateranglia Ok thanks... Label : no complaint']\n"
|
| 1174 |
+
]
|
| 1175 |
+
}
|
| 1176 |
+
],
|
| 1177 |
+
"source": [
|
| 1178 |
+
"model.to(device)\n",
|
| 1179 |
+
"model.eval()\n",
|
| 1180 |
+
"i = 4\n",
|
| 1181 |
+
"inputs = tokenizer(f'{text_column} : {dataset[\"test\"][i][\"Tweet text\"]} Label : ', return_tensors=\"pt\")\n",
|
| 1182 |
+
"print(dataset[\"test\"][i][\"Tweet text\"])\n",
|
| 1183 |
+
"print(inputs)\n",
|
| 1184 |
+
"\n",
|
| 1185 |
+
"with torch.no_grad():\n",
|
| 1186 |
+
" inputs = {k: v.to(device) for k, v in inputs.items()}\n",
|
| 1187 |
+
" outputs = model.generate(\n",
|
| 1188 |
+
" input_ids=inputs[\"input_ids\"], attention_mask=inputs[\"attention_mask\"], max_new_tokens=10, eos_token_id=3\n",
|
| 1189 |
+
" )\n",
|
| 1190 |
+
" print(outputs)\n",
|
| 1191 |
+
" print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))"
|
| 1192 |
+
]
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"cell_type": "code",
|
| 1196 |
+
"execution_count": null,
|
| 1197 |
+
"id": "24041ee1",
|
| 1198 |
+
"metadata": {},
|
| 1199 |
+
"outputs": [],
|
| 1200 |
+
"source": []
|
| 1201 |
+
}
|
| 1202 |
+
],
|
| 1203 |
+
"metadata": {
|
| 1204 |
+
"kernelspec": {
|
| 1205 |
+
"display_name": "Python 3 (ipykernel)",
|
| 1206 |
+
"language": "python",
|
| 1207 |
+
"name": "python3"
|
| 1208 |
+
},
|
| 1209 |
+
"language_info": {
|
| 1210 |
+
"codemirror_mode": {
|
| 1211 |
+
"name": "ipython",
|
| 1212 |
+
"version": 3
|
| 1213 |
+
},
|
| 1214 |
+
"file_extension": ".py",
|
| 1215 |
+
"mimetype": "text/x-python",
|
| 1216 |
+
"name": "python",
|
| 1217 |
+
"nbconvert_exporter": "python",
|
| 1218 |
+
"pygments_lexer": "ipython3",
|
| 1219 |
+
"version": "3.10.5"
|
| 1220 |
+
},
|
| 1221 |
+
"vscode": {
|
| 1222 |
+
"interpreter": {
|
| 1223 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
| 1224 |
+
}
|
| 1225 |
+
}
|
| 1226 |
+
},
|
| 1227 |
+
"nbformat": 4,
|
| 1228 |
+
"nbformat_minor": 5
|
| 1229 |
+
}
|