P-rateek commited on
Commit
cb873d6
·
verified ·
1 Parent(s): a11ad8b

Delete mamba-main

Browse files
Files changed (45) hide show
  1. mamba-main/.DS_Store +0 -0
  2. mamba-main/.github/workflows/publish.yaml +0 -235
  3. mamba-main/.gitignore +0 -4
  4. mamba-main/.gitmodules +0 -3
  5. mamba-main/AUTHORS +0 -2
  6. mamba-main/LICENSE +0 -201
  7. mamba-main/README.md +0 -178
  8. mamba-main/assets/selection.png +0 -3
  9. mamba-main/benchmarks/benchmark_generation_mamba_simple.py +0 -92
  10. mamba-main/csrc/.DS_Store +0 -0
  11. mamba-main/csrc/selective_scan/reverse_scan.cuh +0 -401
  12. mamba-main/csrc/selective_scan/selective_scan.cpp +0 -497
  13. mamba-main/csrc/selective_scan/selective_scan.h +0 -101
  14. mamba-main/csrc/selective_scan/selective_scan_bwd_bf16_complex.cu +0 -9
  15. mamba-main/csrc/selective_scan/selective_scan_bwd_bf16_real.cu +0 -9
  16. mamba-main/csrc/selective_scan/selective_scan_bwd_fp16_complex.cu +0 -9
  17. mamba-main/csrc/selective_scan/selective_scan_bwd_fp16_real.cu +0 -9
  18. mamba-main/csrc/selective_scan/selective_scan_bwd_fp32_complex.cu +0 -9
  19. mamba-main/csrc/selective_scan/selective_scan_bwd_fp32_real.cu +0 -9
  20. mamba-main/csrc/selective_scan/selective_scan_bwd_kernel.cuh +0 -531
  21. mamba-main/csrc/selective_scan/selective_scan_common.h +0 -221
  22. mamba-main/csrc/selective_scan/selective_scan_fwd_bf16.cu +0 -10
  23. mamba-main/csrc/selective_scan/selective_scan_fwd_fp16.cu +0 -10
  24. mamba-main/csrc/selective_scan/selective_scan_fwd_fp32.cu +0 -10
  25. mamba-main/csrc/selective_scan/selective_scan_fwd_kernel.cuh +0 -345
  26. mamba-main/csrc/selective_scan/static_switch.h +0 -25
  27. mamba-main/csrc/selective_scan/uninitialized_copy.cuh +0 -69
  28. mamba-main/evals/lm_harness_eval.py +0 -39
  29. mamba-main/mamba_ssm/__init__.py +0 -5
  30. mamba-main/mamba_ssm/models/__init__.py +0 -0
  31. mamba-main/mamba_ssm/models/config_mamba.py +0 -15
  32. mamba-main/mamba_ssm/models/mixer_seq_simple.py +0 -265
  33. mamba-main/mamba_ssm/modules/__init__.py +0 -0
  34. mamba-main/mamba_ssm/modules/mamba_simple.py +0 -353
  35. mamba-main/mamba_ssm/ops/__init__.py +0 -0
  36. mamba-main/mamba_ssm/ops/selective_scan_interface.py +0 -357
  37. mamba-main/mamba_ssm/ops/triton/__init__.py +0 -0
  38. mamba-main/mamba_ssm/ops/triton/layernorm.py +0 -635
  39. mamba-main/mamba_ssm/ops/triton/selective_state_update.py +0 -192
  40. mamba-main/mamba_ssm/utils/__init__.py +0 -0
  41. mamba-main/mamba_ssm/utils/generation.py +0 -387
  42. mamba-main/mamba_ssm/utils/hf.py +0 -23
  43. mamba-main/setup.py +0 -276
  44. mamba-main/tests/ops/test_selective_scan.py +0 -247
  45. mamba-main/tests/ops/triton/test_selective_state_update.py +0 -49
mamba-main/.DS_Store DELETED
Binary file (6.15 kB)
 
mamba-main/.github/workflows/publish.yaml DELETED
@@ -1,235 +0,0 @@
1
- # This workflow will:
2
- # - Create a new Github release
3
- # - Build wheels for supported architectures
4
- # - Deploy the wheels to the Github release
5
- # - Release the static code to PyPi
6
- # For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
7
-
8
- name: Build wheels and deploy
9
-
10
- on:
11
- create:
12
- tags:
13
- - v*
14
-
15
- jobs:
16
-
17
- setup_release:
18
- name: Create Release
19
- runs-on: ubuntu-latest
20
- steps:
21
- - name: Get the tag version
22
- id: extract_branch
23
- run: echo ::set-output name=branch::${GITHUB_REF#refs/tags/}
24
- shell: bash
25
-
26
- - name: Create Release
27
- id: create_release
28
- uses: actions/create-release@v1
29
- env:
30
- GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
31
- with:
32
- tag_name: ${{ steps.extract_branch.outputs.branch }}
33
- release_name: ${{ steps.extract_branch.outputs.branch }}
34
-
35
- build_wheels:
36
- name: Build Wheel
37
- needs: setup_release
38
- runs-on: ${{ matrix.os }}
39
-
40
- strategy:
41
- fail-fast: false
42
- matrix:
43
- # Using ubuntu-20.04 instead of 22.04 for more compatibility (glibc). Ideally we'd use the
44
- # manylinux docker image, but I haven't figured out how to install CUDA on manylinux.
45
- os: [ubuntu-20.04]
46
- python-version: ['3.7', '3.8', '3.9', '3.10', '3.11', '3.12']
47
- torch-version: ['1.12.1', '1.13.1', '2.0.1', '2.1.2', '2.2.0', '2.3.0.dev20240105']
48
- cuda-version: ['11.8.0', '12.2.2']
49
- # We need separate wheels that either uses C++11 ABI (-D_GLIBCXX_USE_CXX11_ABI) or not.
50
- # Pytorch wheels currently don't use it, but nvcr images have Pytorch compiled with C++11 ABI.
51
- # Without this we get import error (undefined symbol: _ZN3c105ErrorC2ENS_14SourceLocationESs)
52
- # when building without C++11 ABI and using it on nvcr images.
53
- cxx11_abi: ['FALSE', 'TRUE']
54
- exclude:
55
- # Pytorch < 2.2 does not support Python 3.12
56
- - torch-version: '1.12.1'
57
- python-version: '3.12'
58
- - torch-version: '1.13.1'
59
- python-version: '3.12'
60
- - torch-version: '2.0.1'
61
- python-version: '3.12'
62
- - torch-version: '2.1.2'
63
- python-version: '3.12'
64
- # Pytorch <= 1.12 does not support Python 3.11
65
- - torch-version: '1.12.1'
66
- python-version: '3.11'
67
- # Pytorch >= 2.0 only supports Python >= 3.8
68
- - torch-version: '2.0.1'
69
- python-version: '3.7'
70
- - torch-version: '2.1.2'
71
- python-version: '3.7'
72
- - torch-version: '2.2.0'
73
- python-version: '3.7'
74
- - torch-version: '2.3.0.dev20240105'
75
- python-version: '3.7'
76
- # Pytorch <= 2.0 only supports CUDA <= 11.8
77
- - torch-version: '1.12.1'
78
- cuda-version: '12.2.2'
79
- - torch-version: '1.13.1'
80
- cuda-version: '12.2.2'
81
- - torch-version: '2.0.1'
82
- cuda-version: '12.2.2'
83
-
84
- steps:
85
- - name: Checkout
86
- uses: actions/checkout@v3
87
-
88
- - name: Set up Python
89
- uses: actions/setup-python@v4
90
- with:
91
- python-version: ${{ matrix.python-version }}
92
-
93
- - name: Set CUDA and PyTorch versions
94
- run: |
95
- echo "MATRIX_CUDA_VERSION=$(echo ${{ matrix.cuda-version }} | awk -F \. {'print $1 $2'})" >> $GITHUB_ENV
96
- echo "MATRIX_TORCH_VERSION=$(echo ${{ matrix.torch-version }} | awk -F \. {'print $1 "." $2'})" >> $GITHUB_ENV
97
-
98
- - name: Free up disk space
99
- if: ${{ runner.os == 'Linux' }}
100
- # https://github.com/easimon/maximize-build-space/blob/master/action.yml
101
- # https://github.com/easimon/maximize-build-space/tree/test-report
102
- run: |
103
- sudo rm -rf /usr/share/dotnet
104
- sudo rm -rf /opt/ghc
105
- sudo rm -rf /opt/hostedtoolcache/CodeQL
106
-
107
- - name: Set up swap space
108
- if: runner.os == 'Linux'
109
- uses: pierotofy/[email protected]
110
- with:
111
- swap-size-gb: 10
112
-
113
- - name: Install CUDA ${{ matrix.cuda-version }}
114
- if: ${{ matrix.cuda-version != 'cpu' }}
115
- uses: Jimver/[email protected]
116
- id: cuda-toolkit
117
- with:
118
- cuda: ${{ matrix.cuda-version }}
119
- linux-local-args: '["--toolkit"]'
120
- # default method is "local", and we're hitting some error with caching for CUDA 11.8 and 12.1
121
- # method: ${{ (matrix.cuda-version == '11.8.0' || matrix.cuda-version == '12.1.0') && 'network' || 'local' }}
122
- method: 'network'
123
- # We need the cuda libraries (e.g. cuSparse, cuSolver) for compiling PyTorch extensions,
124
- # not just nvcc
125
- # sub-packages: '["nvcc"]'
126
-
127
- - name: Install PyTorch ${{ matrix.torch-version }}+cu${{ matrix.cuda-version }}
128
- run: |
129
- pip install --upgrade pip
130
- # If we don't install before installing Pytorch, we get error for torch 2.0.1
131
- # ERROR: Could not find a version that satisfies the requirement setuptools>=40.8.0 (from versions: none)
132
- pip install lit
133
- # For some reason torch 2.2.0 on python 3.12 errors saying no setuptools
134
- pip install setuptools
135
- # We want to figure out the CUDA version to download pytorch
136
- # e.g. we can have system CUDA version being 11.7 but if torch==1.12 then we need to download the wheel from cu116
137
- # This code is ugly, maybe there's a better way to do this.
138
- export TORCH_CUDA_VERSION=$(python -c "from os import environ as env; \
139
- minv = {'1.12': 113, '1.13': 116, '2.0': 117, '2.1': 118, '2.2': 118, '2.3': 118}[env['MATRIX_TORCH_VERSION']]; \
140
- maxv = {'1.12': 116, '1.13': 117, '2.0': 118, '2.1': 121, '2.2': 121, '2.3': 121}[env['MATRIX_TORCH_VERSION']]; \
141
- print(max(min(int(env['MATRIX_CUDA_VERSION']), maxv), minv))" \
142
- )
143
- if [[ ${{ matrix.torch-version }} == *"dev"* ]]; then
144
- if [[ ${MATRIX_TORCH_VERSION} == "2.2" ]]; then
145
- # --no-deps because we can't install old versions of pytorch-triton
146
- pip install typing-extensions jinja2
147
- pip install --no-cache-dir --no-deps --pre https://download.pytorch.org/whl/nightly/cu${TORCH_CUDA_VERSION}/torch-${{ matrix.torch-version }}%2Bcu${TORCH_CUDA_VERSION}-cp${MATRIX_PYTHON_VERSION}-cp${MATRIX_PYTHON_VERSION}-linux_x86_64.whl
148
- else
149
- pip install --no-cache-dir --pre torch==${{ matrix.torch-version }} --index-url https://download.pytorch.org/whl/nightly/cu${TORCH_CUDA_VERSION}
150
- fi
151
- else
152
- pip install --no-cache-dir torch==${{ matrix.torch-version }} --index-url https://download.pytorch.org/whl/cu${TORCH_CUDA_VERSION}
153
- fi
154
- nvcc --version
155
- python --version
156
- python -c "import torch; print('PyTorch:', torch.__version__)"
157
- python -c "import torch; print('CUDA:', torch.version.cuda)"
158
- python -c "from torch.utils import cpp_extension; print (cpp_extension.CUDA_HOME)"
159
- shell:
160
- bash
161
-
162
- - name: Build wheel
163
- run: |
164
- # We want setuptools >= 49.6.0 otherwise we can't compile the extension if system CUDA version is 11.7 and pytorch cuda version is 11.6
165
- # https://github.com/pytorch/pytorch/blob/664058fa83f1d8eede5d66418abff6e20bd76ca8/torch/utils/cpp_extension.py#L810
166
- # However this still fails so I'm using a newer version of setuptools
167
- pip install setuptools==68.0.0
168
- pip install ninja packaging wheel
169
- export PATH=/usr/local/nvidia/bin:/usr/local/nvidia/lib64:$PATH
170
- export LD_LIBRARY_PATH=/usr/local/nvidia/lib64:/usr/local/cuda/lib64:$LD_LIBRARY_PATH
171
- # Limit MAX_JOBS otherwise the github runner goes OOM
172
- MAX_JOBS=2 MAMBA_FORCE_BUILD="TRUE" MAMBA_FORCE_CXX11_ABI=${{ matrix.cxx11_abi}} python setup.py bdist_wheel --dist-dir=dist
173
- tmpname=cu${MATRIX_CUDA_VERSION}torch${MATRIX_TORCH_VERSION}cxx11abi${{ matrix.cxx11_abi }}
174
- wheel_name=$(ls dist/*whl | xargs -n 1 basename | sed "s/-/+$tmpname-/2")
175
- ls dist/*whl |xargs -I {} mv {} dist/${wheel_name}
176
- echo "wheel_name=${wheel_name}" >> $GITHUB_ENV
177
-
178
- - name: Log Built Wheels
179
- run: |
180
- ls dist
181
-
182
- - name: Get the tag version
183
- id: extract_branch
184
- run: echo ::set-output name=branch::${GITHUB_REF#refs/tags/}
185
-
186
- - name: Get Release with tag
187
- id: get_current_release
188
- uses: joutvhu/get-release@v1
189
- with:
190
- tag_name: ${{ steps.extract_branch.outputs.branch }}
191
- env:
192
- GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
193
-
194
- - name: Upload Release Asset
195
- id: upload_release_asset
196
- uses: actions/upload-release-asset@v1
197
- env:
198
- GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
199
- with:
200
- upload_url: ${{ steps.get_current_release.outputs.upload_url }}
201
- asset_path: ./dist/${{env.wheel_name}}
202
- asset_name: ${{env.wheel_name}}
203
- asset_content_type: application/*
204
-
205
- publish_package:
206
- name: Publish package
207
- needs: [build_wheels]
208
-
209
- runs-on: ubuntu-latest
210
-
211
- steps:
212
- - uses: actions/checkout@v3
213
-
214
- - uses: actions/setup-python@v4
215
- with:
216
- python-version: '3.10'
217
-
218
- - name: Install dependencies
219
- run: |
220
- pip install ninja packaging setuptools wheel twine
221
- # We don't want to download anything CUDA-related here
222
- pip install torch --index-url https://download.pytorch.org/whl/cpu
223
-
224
- - name: Build core package
225
- env:
226
- MAMBA_SKIP_CUDA_BUILD: "TRUE"
227
- run: |
228
- python setup.py sdist --dist-dir=dist
229
-
230
- - name: Deploy
231
- env:
232
- TWINE_USERNAME: "__token__"
233
- TWINE_PASSWORD: ${{ secrets.PYPI_API_TOKEN }}
234
- run: |
235
- python -m twine upload dist/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/.gitignore DELETED
@@ -1,4 +0,0 @@
1
- *__pycache__/
2
- *.egg-info/
3
- build/
4
- **.so
 
 
 
 
 
mamba-main/.gitmodules DELETED
@@ -1,3 +0,0 @@
1
- [submodule "3rdparty/lm-evaluation-harness"]
2
- path = 3rdparty/lm-evaluation-harness
3
- url = https://github.com/EleutherAI/lm-evaluation-harness/
 
 
 
 
mamba-main/AUTHORS DELETED
@@ -1,2 +0,0 @@
1
- Tri Dao, [email protected]
2
- Albert Gu, [email protected]
 
 
 
mamba-main/LICENSE DELETED
@@ -1,201 +0,0 @@
1
- Apache License
2
- Version 2.0, January 2004
3
- http://www.apache.org/licenses/
4
-
5
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
-
7
- 1. Definitions.
8
-
9
- "License" shall mean the terms and conditions for use, reproduction,
10
- and distribution as defined by Sections 1 through 9 of this document.
11
-
12
- "Licensor" shall mean the copyright owner or entity authorized by
13
- the copyright owner that is granting the License.
14
-
15
- "Legal Entity" shall mean the union of the acting entity and all
16
- other entities that control, are controlled by, or are under common
17
- control with that entity. For the purposes of this definition,
18
- "control" means (i) the power, direct or indirect, to cause the
19
- direction or management of such entity, whether by contract or
20
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
- outstanding shares, or (iii) beneficial ownership of such entity.
22
-
23
- "You" (or "Your") shall mean an individual or Legal Entity
24
- exercising permissions granted by this License.
25
-
26
- "Source" form shall mean the preferred form for making modifications,
27
- including but not limited to software source code, documentation
28
- source, and configuration files.
29
-
30
- "Object" form shall mean any form resulting from mechanical
31
- transformation or translation of a Source form, including but
32
- not limited to compiled object code, generated documentation,
33
- and conversions to other media types.
34
-
35
- "Work" shall mean the work of authorship, whether in Source or
36
- Object form, made available under the License, as indicated by a
37
- copyright notice that is included in or attached to the work
38
- (an example is provided in the Appendix below).
39
-
40
- "Derivative Works" shall mean any work, whether in Source or Object
41
- form, that is based on (or derived from) the Work and for which the
42
- editorial revisions, annotations, elaborations, or other modifications
43
- represent, as a whole, an original work of authorship. For the purposes
44
- of this License, Derivative Works shall not include works that remain
45
- separable from, or merely link (or bind by name) to the interfaces of,
46
- the Work and Derivative Works thereof.
47
-
48
- "Contribution" shall mean any work of authorship, including
49
- the original version of the Work and any modifications or additions
50
- to that Work or Derivative Works thereof, that is intentionally
51
- submitted to Licensor for inclusion in the Work by the copyright owner
52
- or by an individual or Legal Entity authorized to submit on behalf of
53
- the copyright owner. For the purposes of this definition, "submitted"
54
- means any form of electronic, verbal, or written communication sent
55
- to the Licensor or its representatives, including but not limited to
56
- communication on electronic mailing lists, source code control systems,
57
- and issue tracking systems that are managed by, or on behalf of, the
58
- Licensor for the purpose of discussing and improving the Work, but
59
- excluding communication that is conspicuously marked or otherwise
60
- designated in writing by the copyright owner as "Not a Contribution."
61
-
62
- "Contributor" shall mean Licensor and any individual or Legal Entity
63
- on behalf of whom a Contribution has been received by Licensor and
64
- subsequently incorporated within the Work.
65
-
66
- 2. Grant of Copyright License. Subject to the terms and conditions of
67
- this License, each Contributor hereby grants to You a perpetual,
68
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
- copyright license to reproduce, prepare Derivative Works of,
70
- publicly display, publicly perform, sublicense, and distribute the
71
- Work and such Derivative Works in Source or Object form.
72
-
73
- 3. Grant of Patent License. Subject to the terms and conditions of
74
- this License, each Contributor hereby grants to You a perpetual,
75
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
- (except as stated in this section) patent license to make, have made,
77
- use, offer to sell, sell, import, and otherwise transfer the Work,
78
- where such license applies only to those patent claims licensable
79
- by such Contributor that are necessarily infringed by their
80
- Contribution(s) alone or by combination of their Contribution(s)
81
- with the Work to which such Contribution(s) was submitted. If You
82
- institute patent litigation against any entity (including a
83
- cross-claim or counterclaim in a lawsuit) alleging that the Work
84
- or a Contribution incorporated within the Work constitutes direct
85
- or contributory patent infringement, then any patent licenses
86
- granted to You under this License for that Work shall terminate
87
- as of the date such litigation is filed.
88
-
89
- 4. Redistribution. You may reproduce and distribute copies of the
90
- Work or Derivative Works thereof in any medium, with or without
91
- modifications, and in Source or Object form, provided that You
92
- meet the following conditions:
93
-
94
- (a) You must give any other recipients of the Work or
95
- Derivative Works a copy of this License; and
96
-
97
- (b) You must cause any modified files to carry prominent notices
98
- stating that You changed the files; and
99
-
100
- (c) You must retain, in the Source form of any Derivative Works
101
- that You distribute, all copyright, patent, trademark, and
102
- attribution notices from the Source form of the Work,
103
- excluding those notices that do not pertain to any part of
104
- the Derivative Works; and
105
-
106
- (d) If the Work includes a "NOTICE" text file as part of its
107
- distribution, then any Derivative Works that You distribute must
108
- include a readable copy of the attribution notices contained
109
- within such NOTICE file, excluding those notices that do not
110
- pertain to any part of the Derivative Works, in at least one
111
- of the following places: within a NOTICE text file distributed
112
- as part of the Derivative Works; within the Source form or
113
- documentation, if provided along with the Derivative Works; or,
114
- within a display generated by the Derivative Works, if and
115
- wherever such third-party notices normally appear. The contents
116
- of the NOTICE file are for informational purposes only and
117
- do not modify the License. You may add Your own attribution
118
- notices within Derivative Works that You distribute, alongside
119
- or as an addendum to the NOTICE text from the Work, provided
120
- that such additional attribution notices cannot be construed
121
- as modifying the License.
122
-
123
- You may add Your own copyright statement to Your modifications and
124
- may provide additional or different license terms and conditions
125
- for use, reproduction, or distribution of Your modifications, or
126
- for any such Derivative Works as a whole, provided Your use,
127
- reproduction, and distribution of the Work otherwise complies with
128
- the conditions stated in this License.
129
-
130
- 5. Submission of Contributions. Unless You explicitly state otherwise,
131
- any Contribution intentionally submitted for inclusion in the Work
132
- by You to the Licensor shall be under the terms and conditions of
133
- this License, without any additional terms or conditions.
134
- Notwithstanding the above, nothing herein shall supersede or modify
135
- the terms of any separate license agreement you may have executed
136
- with Licensor regarding such Contributions.
137
-
138
- 6. Trademarks. This License does not grant permission to use the trade
139
- names, trademarks, service marks, or product names of the Licensor,
140
- except as required for reasonable and customary use in describing the
141
- origin of the Work and reproducing the content of the NOTICE file.
142
-
143
- 7. Disclaimer of Warranty. Unless required by applicable law or
144
- agreed to in writing, Licensor provides the Work (and each
145
- Contributor provides its Contributions) on an "AS IS" BASIS,
146
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
- implied, including, without limitation, any warranties or conditions
148
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
- PARTICULAR PURPOSE. You are solely responsible for determining the
150
- appropriateness of using or redistributing the Work and assume any
151
- risks associated with Your exercise of permissions under this License.
152
-
153
- 8. Limitation of Liability. In no event and under no legal theory,
154
- whether in tort (including negligence), contract, or otherwise,
155
- unless required by applicable law (such as deliberate and grossly
156
- negligent acts) or agreed to in writing, shall any Contributor be
157
- liable to You for damages, including any direct, indirect, special,
158
- incidental, or consequential damages of any character arising as a
159
- result of this License or out of the use or inability to use the
160
- Work (including but not limited to damages for loss of goodwill,
161
- work stoppage, computer failure or malfunction, or any and all
162
- other commercial damages or losses), even if such Contributor
163
- has been advised of the possibility of such damages.
164
-
165
- 9. Accepting Warranty or Additional Liability. While redistributing
166
- the Work or Derivative Works thereof, You may choose to offer,
167
- and charge a fee for, acceptance of support, warranty, indemnity,
168
- or other liability obligations and/or rights consistent with this
169
- License. However, in accepting such obligations, You may act only
170
- on Your own behalf and on Your sole responsibility, not on behalf
171
- of any other Contributor, and only if You agree to indemnify,
172
- defend, and hold each Contributor harmless for any liability
173
- incurred by, or claims asserted against, such Contributor by reason
174
- of your accepting any such warranty or additional liability.
175
-
176
- END OF TERMS AND CONDITIONS
177
-
178
- APPENDIX: How to apply the Apache License to your work.
179
-
180
- To apply the Apache License to your work, attach the following
181
- boilerplate notice, with the fields enclosed by brackets "[]"
182
- replaced with your own identifying information. (Don't include
183
- the brackets!) The text should be enclosed in the appropriate
184
- comment syntax for the file format. We also recommend that a
185
- file or class name and description of purpose be included on the
186
- same "printed page" as the copyright notice for easier
187
- identification within third-party archives.
188
-
189
- Copyright 2023 Tri Dao, Albert Gu
190
-
191
- Licensed under the Apache License, Version 2.0 (the "License");
192
- you may not use this file except in compliance with the License.
193
- You may obtain a copy of the License at
194
-
195
- http://www.apache.org/licenses/LICENSE-2.0
196
-
197
- Unless required by applicable law or agreed to in writing, software
198
- distributed under the License is distributed on an "AS IS" BASIS,
199
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
- See the License for the specific language governing permissions and
201
- limitations under the License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/README.md DELETED
@@ -1,178 +0,0 @@
1
- # Mamba
2
-
3
- ![Mamba](assets/selection.png "Selective State Space")
4
- > **Mamba: Linear-Time Sequence Modeling with Selective State Spaces**\
5
- > Albert Gu*, Tri Dao*\
6
- > Paper: https://arxiv.org/abs/2312.00752
7
-
8
- ## About
9
-
10
- Mamba is a new state space model architecture showing promising performance on information-dense data such as language modeling, where previous subquadratic models fall short of Transformers.
11
- It is based on the line of progress on [structured state space models](https://github.com/state-spaces/s4),
12
- with an efficient hardware-aware design and implementation in the spirit of [FlashAttention](https://github.com/Dao-AILab/flash-attention).
13
-
14
- ## Installation
15
-
16
- - [Option] `pip install causal-conv1d>=1.2.0`: an efficient implementation of a simple causal Conv1d layer used inside the Mamba block.
17
- - `pip install mamba-ssm`: the core Mamba package.
18
-
19
- It can also be built from source with `pip install .` from this repository.
20
-
21
- If `pip` complains about PyTorch versions, try passing `--no-build-isolation` to `pip`.
22
-
23
- Other requirements:
24
- - Linux
25
- - NVIDIA GPU
26
- - PyTorch 1.12+
27
- - CUDA 11.6+
28
-
29
- ## Usage
30
-
31
- We expose several levels of interface with the Mamba model.
32
-
33
- ### Selective SSM
34
-
35
- Mamba is based on a selective SSM layer, which is the focus of the paper (Section 3; Algorithm 2).
36
-
37
- Source: [ops/selective_scan_interface.py](mamba_ssm/ops/selective_scan_interface.py).
38
-
39
- ### Mamba Block
40
-
41
- The main module of this repository is the Mamba architecture block wrapping the selective SSM.
42
-
43
- Source: [modules/mamba_simple.py](mamba_ssm/modules/mamba_simple.py).
44
-
45
- Usage:
46
- ```
47
- import torch
48
- from mamba_ssm import Mamba
49
-
50
- batch, length, dim = 2, 64, 16
51
- x = torch.randn(batch, length, dim).to("cuda")
52
- model = Mamba(
53
- # This module uses roughly 3 * expand * d_model^2 parameters
54
- d_model=dim, # Model dimension d_model
55
- d_state=16, # SSM state expansion factor
56
- d_conv=4, # Local convolution width
57
- expand=2, # Block expansion factor
58
- ).to("cuda")
59
- y = model(x)
60
- assert y.shape == x.shape
61
- ```
62
-
63
- ### Mamba Language Model
64
-
65
- Finally, we provide an example of a complete language model: a deep sequence model backbone (with repeating Mamba blocks) + language model head.
66
-
67
- Source: [models/mixer_seq_simple.py](mamba_ssm/models/mixer_seq_simple.py).
68
-
69
- This is an example of how to integrate Mamba into an end-to-end neural network.
70
- This example is used in the generation scripts below.
71
-
72
-
73
-
74
- ## Pretrained Models
75
-
76
- Pretrained models are uploaded to
77
- [Hugging Face](https://huggingface.co/state-spaces): `mamba-130m`, `mamba-370m`,
78
- `mamba-790m`, `mamba-1.4b`, `mamba-2.8b`, trained on 300B tokens on the Pile, as well as `mamba-2.8b-slimpj`
79
- (trained on 600B tokens on the SlimPajama dataset).
80
-
81
-
82
- The models will be autodownloaded by the generation script below.
83
-
84
- These models were trained on the [Pile](https://huggingface.co/datasets/EleutherAI/pile), and follow the standard model dimensions described by GPT-3 and followed by many open source models:
85
-
86
- | Parameters | Layers | Model dim. |
87
- |------------|--------|------------|
88
- | 130M | 24 | 768 |
89
- | 370M | 48 | 1024 |
90
- | 790M | 48 | 1536 |
91
- | 1.4B | 48 | 2048 |
92
- | 2.8B | 64 | 2560 |
93
-
94
- (The layer count of Mamba doubles that of a Transformer with similar size, as two Mamba blocks are needed for each "layer" (MHA block + MLP block) of a Transformer.)
95
-
96
- Note: these are base models trained only for 300B tokens, without any form of downstream modification (instruction tuning, etc.).
97
- Performance is expected to be comparable or better than other architectures trained on similar data, but not to match larger or fine-tuned models.
98
-
99
-
100
- ## Evaluations
101
-
102
- To run zero-shot evaluations of models (corresponding to Table 3 of the paper),
103
- we use the
104
- [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/big-refactor)
105
- library.
106
-
107
- 1. Pull the `lm-evaluation-harness` repo by `git submodule update --init
108
- --recursive`. We use the `big-refactor` branch.
109
- 2. Install `lm-evaluation-harness`: `pip install -e 3rdparty/lm-evaluation-harness`.
110
- On Python 3.10 you might need to manually install the latest version of `promptsource`: `pip install git+https://github.com/bigscience-workshop/promptsource.git`.
111
- 3. Run evaluation with (more documentation at the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/big-refactor) repo):
112
- ```
113
- python evals/lm_harness_eval.py --model mamba --model_args pretrained=state-spaces/mamba-130m --tasks lambada_openai,hellaswag,piqa,arc_easy,arc_challenge,winogrande --device cuda --batch_size 64
114
- python evals/lm_harness_eval.py --model hf --model_args pretrained=EleutherAI/pythia-160m --tasks lambada_openai,hellaswag,piqa,arc_easy,arc_challenge,winogrande --device cuda --batch_size 64
115
- ```
116
-
117
- To reproduce the results on the `mamba-2.8b-slimpj` model reported in the blogposts:
118
- ```
119
- python evals/lm_harness_eval.py --model mamba --model_args pretrained=state-spaces/mamba-2.8b-slimpj --tasks boolq,piqa,hellaswag,winogrande,arc_easy,arc_challenge,openbookqa,race,truthfulqa_mc2 --device cuda --batch_size 64
120
- python evals/lm_harness_eval.py --model mamba --model_args pretrained=state-spaces/mamba-2.8b-slimpj --tasks mmlu --num_fewshot 5 --device cuda --batch_size 64
121
- ```
122
-
123
- Note that the result of each task might differ from reported values by 0.1-0.3 due to noise in the evaluation process.
124
-
125
- ## Inference
126
-
127
- The script [benchmarks/benchmark_generation_mamba_simple.py](benchmarks/benchmark_generation_mamba_simple.py)
128
- 1. autoloads a model from the Hugging Face Hub,
129
- 2. generates completions of a user-specified prompt,
130
- 3. benchmarks the inference speed of this generation.
131
-
132
- Other configurable options include the top-p (nucleus sampling) probability, and the softmax temperature.
133
-
134
- ### Examples
135
-
136
- To test generation latency (e.g. batch size = 1) with different sampling strategies:
137
-
138
- ```
139
- python benchmarks/benchmark_generation_mamba_simple.py --model-name "state-spaces/mamba-2.8b" --prompt "My cat wrote all this CUDA code for a new language model and" --topp 0.9 --temperature 0.7 --repetition-penalty 1.2
140
- python benchmarks/benchmark_generation_mamba_simple.py --model-name "EleutherAI/pythia-2.8b" --prompt "My cat wrote all this CUDA code for a new language model and" --topp 0.9 --temperature 0.7 --repetition-penalty 1.2
141
- python benchmarks/benchmark_generation_mamba_simple.py --model-name "state-spaces/mamba-2.8b" --prompt "My cat wrote all this CUDA code for a new language model and" --minp 0.05 --topk 0 --temperature 0.7 --repetition-penalty 1.2
142
- ```
143
-
144
- To test generation throughput with random prompts (e.g. large batch size):
145
- ```
146
- python benchmarks/benchmark_generation_mamba_simple.py --model-name "state-spaces/mamba-2.8b" --batch 128
147
- python benchmarks/benchmark_generation_mamba_simple.py --model-name "EleutherAI/pythia-2.8b" --batch 128
148
- ```
149
-
150
-
151
- ## Troubleshooting
152
-
153
- ### Precision
154
- Our models were trained using PyTorch [AMP](https://pytorch.org/docs/stable/amp.html) for mixed precision. AMP keeps model parameters in float32 and casts to half precision when necessary.
155
- On the other hand, other frameworks like DeepSpeed store parameters in float16 and upcasts when necessary (e.g. for optimizer accumulation).
156
-
157
- We've observed that higher precision for the main model parameters may be necessary, because SSMs are sensitive to their recurrent dynamics. If you are experiencing instabilities,
158
- as a first step please try a framework storing parameters in fp32 (such as AMP).
159
-
160
- ### Initialization
161
- Some parts of the model have initializations inherited from prior work on S4 models.
162
- For [example](https://github.com/state-spaces/mamba/blob/f0affcf69f06d1d06cef018ff640bf080a11c421/mamba_ssm/modules/mamba_simple.py#L102), the $\Delta$ parameter has a targeted range by initializing the bias of its linear projection.
163
- However, some frameworks may have post-initialization hooks (e.g. setting all bias terms in `nn.Linear` modules to zero).
164
- If this is the case, you may have to add custom logic (e.g. this [line](https://github.com/state-spaces/mamba/blob/f0affcf69f06d1d06cef018ff640bf080a11c421/mamba_ssm/modules/mamba_simple.py#L104) turns off re-initializing in our trainer, but would be a no-op in any other framework)
165
- that is specific to the training framework.
166
-
167
-
168
- ## Citation
169
-
170
- If you use this codebase, or otherwise found our work valuable, please cite Mamba:
171
- ```
172
- @article{mamba,
173
- title={Mamba: Linear-Time Sequence Modeling with Selective State Spaces},
174
- author={Gu, Albert and Dao, Tri},
175
- journal={arXiv preprint arXiv:2312.00752},
176
- year={2023}
177
- }
178
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/assets/selection.png DELETED

Git LFS Details

  • SHA256: d57aeeeca3250d0551956494aa0ef7f56f5758563d849cb3a3576f836e13b914
  • Pointer size: 131 Bytes
  • Size of remote file: 819 kB
mamba-main/benchmarks/benchmark_generation_mamba_simple.py DELETED
@@ -1,92 +0,0 @@
1
- # Copyright (c) 2023, Tri Dao, Albert Gu.
2
-
3
- import argparse
4
- import time
5
- import json
6
-
7
- import torch
8
- import torch.nn.functional as F
9
-
10
- from einops import rearrange
11
-
12
- from transformers import AutoTokenizer, AutoModelForCausalLM
13
-
14
- from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
15
-
16
-
17
- parser = argparse.ArgumentParser(description="Generation benchmarking")
18
- parser.add_argument("--model-name", type=str, default="state-spaces/mamba-130m")
19
- parser.add_argument("--prompt", type=str, default=None)
20
- parser.add_argument("--promptlen", type=int, default=100)
21
- parser.add_argument("--genlen", type=int, default=100)
22
- parser.add_argument("--temperature", type=float, default=1.0)
23
- parser.add_argument("--topk", type=int, default=1)
24
- parser.add_argument("--topp", type=float, default=1.0)
25
- parser.add_argument("--minp", type=float, default=0.0)
26
- parser.add_argument("--repetition-penalty", type=float, default=1.0)
27
- parser.add_argument("--batch", type=int, default=1)
28
- args = parser.parse_args()
29
-
30
- repeats = 3
31
- device = "cuda"
32
- dtype = torch.float16
33
-
34
- print(f"Loading model {args.model_name}")
35
- is_mamba = args.model_name.startswith("state-spaces/mamba-")
36
- if is_mamba:
37
- tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
38
- model = MambaLMHeadModel.from_pretrained(args.model_name, device=device, dtype=dtype)
39
- else:
40
- tokenizer = AutoTokenizer.from_pretrained(args.model_name)
41
- model = AutoModelForCausalLM.from_pretrained(args.model_name, device_map={"": device}, torch_dtype=dtype)
42
- model.eval()
43
- print(f"Number of parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
44
-
45
- torch.random.manual_seed(0)
46
- if args.prompt is None:
47
- input_ids = torch.randint(1, 1000, (args.batch, args.promptlen), dtype=torch.long, device="cuda")
48
- attn_mask = torch.ones_like(input_ids, dtype=torch.long, device="cuda")
49
- else:
50
- tokens = tokenizer(args.prompt, return_tensors="pt")
51
- input_ids = tokens.input_ids.to(device=device)
52
- attn_mask = tokens.attention_mask.to(device=device)
53
- max_length = input_ids.shape[1] + args.genlen
54
-
55
- if is_mamba:
56
- fn = lambda: model.generate(
57
- input_ids=input_ids,
58
- max_length=max_length,
59
- cg=True,
60
- return_dict_in_generate=True,
61
- output_scores=True,
62
- enable_timing=False,
63
- temperature=args.temperature,
64
- top_k=args.topk,
65
- top_p=args.topp,
66
- min_p=args.minp,
67
- repetition_penalty=args.repetition_penalty,
68
- )
69
- else:
70
- fn = lambda: model.generate(
71
- input_ids=input_ids,
72
- attention_mask=attn_mask,
73
- max_length=max_length,
74
- return_dict_in_generate=True,
75
- pad_token_id=tokenizer.eos_token_id,
76
- do_sample=True,
77
- temperature=args.temperature,
78
- top_k=args.topk,
79
- top_p=args.topp,
80
- repetition_penalty=args.repetition_penalty,
81
- )
82
- out = fn()
83
- if args.prompt is not None:
84
- print(tokenizer.batch_decode(out.sequences.tolist()))
85
-
86
- torch.cuda.synchronize()
87
- start = time.time()
88
- for _ in range(repeats):
89
- fn()
90
- torch.cuda.synchronize()
91
- print(f"Prompt length: {len(input_ids[0])}, generation length: {len(out.sequences[0]) - len(input_ids[0])}")
92
- print(f"{args.model_name} prompt processing + decoding time: {(time.time() - start) / repeats * 1000:.0f}ms")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/.DS_Store DELETED
Binary file (6.15 kB)
 
mamba-main/csrc/selective_scan/reverse_scan.cuh DELETED
@@ -1,401 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #pragma once
6
-
7
- #include <cub/config.cuh>
8
-
9
- #include <cub/util_ptx.cuh>
10
- #include <cub/util_type.cuh>
11
- #include <cub/block/block_raking_layout.cuh>
12
- // #include <cub/detail/uninitialized_copy.cuh>
13
- #include "uninitialized_copy.cuh"
14
-
15
- /**
16
- * Perform a reverse sequential reduction over \p LENGTH elements of the \p input array. The aggregate is returned.
17
- */
18
- template <
19
- int LENGTH,
20
- typename T,
21
- typename ReductionOp>
22
- __device__ __forceinline__ T ThreadReverseReduce(const T (&input)[LENGTH], ReductionOp reduction_op) {
23
- static_assert(LENGTH > 0);
24
- T retval = input[LENGTH - 1];
25
- #pragma unroll
26
- for (int i = LENGTH - 2; i >= 0; --i) { retval = reduction_op(retval, input[i]); }
27
- return retval;
28
- }
29
-
30
- /**
31
- * Perform a sequential inclusive postfix reverse scan over the statically-sized \p input array, seeded with the specified \p postfix. The aggregate is returned.
32
- */
33
- template <
34
- int LENGTH,
35
- typename T,
36
- typename ScanOp>
37
- __device__ __forceinline__ T ThreadReverseScanInclusive(
38
- const T (&input)[LENGTH],
39
- T (&output)[LENGTH],
40
- ScanOp scan_op,
41
- const T postfix)
42
- {
43
- T inclusive = postfix;
44
- #pragma unroll
45
- for (int i = LENGTH - 1; i >= 0; --i) {
46
- inclusive = scan_op(inclusive, input[i]);
47
- output[i] = inclusive;
48
- }
49
- }
50
-
51
- /**
52
- * Perform a sequential exclusive postfix reverse scan over the statically-sized \p input array, seeded with the specified \p postfix. The aggregate is returned.
53
- */
54
- template <
55
- int LENGTH,
56
- typename T,
57
- typename ScanOp>
58
- __device__ __forceinline__ T ThreadReverseScanExclusive(
59
- const T (&input)[LENGTH],
60
- T (&output)[LENGTH],
61
- ScanOp scan_op,
62
- const T postfix)
63
- {
64
- // Careful, output maybe be aliased to input
65
- T exclusive = postfix;
66
- T inclusive;
67
- #pragma unroll
68
- for (int i = LENGTH - 1; i >= 0; --i) {
69
- inclusive = scan_op(exclusive, input[i]);
70
- output[i] = exclusive;
71
- exclusive = inclusive;
72
- }
73
- return inclusive;
74
- }
75
-
76
-
77
- /**
78
- * \brief WarpReverseScan provides SHFL-based variants of parallel postfix scan of items partitioned across a CUDA thread warp.
79
- *
80
- * LOGICAL_WARP_THREADS must be a power-of-two
81
- */
82
- template <
83
- typename T, ///< Data type being scanned
84
- int LOGICAL_WARP_THREADS ///< Number of threads per logical warp
85
- >
86
- struct WarpReverseScan {
87
- //---------------------------------------------------------------------
88
- // Constants and type definitions
89
- //---------------------------------------------------------------------
90
-
91
- /// Whether the logical warp size and the PTX warp size coincide
92
- static constexpr bool IS_ARCH_WARP = (LOGICAL_WARP_THREADS == CUB_WARP_THREADS(0));
93
- /// The number of warp scan steps
94
- static constexpr int STEPS = cub::Log2<LOGICAL_WARP_THREADS>::VALUE;
95
- static_assert(LOGICAL_WARP_THREADS == 1 << STEPS);
96
-
97
-
98
- //---------------------------------------------------------------------
99
- // Thread fields
100
- //---------------------------------------------------------------------
101
-
102
- /// Lane index in logical warp
103
- unsigned int lane_id;
104
-
105
- /// Logical warp index in 32-thread physical warp
106
- unsigned int warp_id;
107
-
108
- /// 32-thread physical warp member mask of logical warp
109
- unsigned int member_mask;
110
-
111
- //---------------------------------------------------------------------
112
- // Construction
113
- //---------------------------------------------------------------------
114
-
115
- /// Constructor
116
- explicit __device__ __forceinline__
117
- WarpReverseScan()
118
- : lane_id(cub::LaneId())
119
- , warp_id(IS_ARCH_WARP ? 0 : (lane_id / LOGICAL_WARP_THREADS))
120
- , member_mask(cub::WarpMask<LOGICAL_WARP_THREADS>(warp_id))
121
- {
122
- if (!IS_ARCH_WARP) {
123
- lane_id = lane_id % LOGICAL_WARP_THREADS;
124
- }
125
- }
126
-
127
-
128
- /// Broadcast
129
- __device__ __forceinline__ T Broadcast(
130
- T input, ///< [in] The value to broadcast
131
- int src_lane) ///< [in] Which warp lane is to do the broadcasting
132
- {
133
- return cub::ShuffleIndex<LOGICAL_WARP_THREADS>(input, src_lane, member_mask);
134
- }
135
-
136
-
137
- /// Inclusive scan
138
- template <typename ScanOpT>
139
- __device__ __forceinline__ void InclusiveReverseScan(
140
- T input, ///< [in] Calling thread's input item.
141
- T &inclusive_output, ///< [out] Calling thread's output item. May be aliased with \p input.
142
- ScanOpT scan_op) ///< [in] Binary scan operator
143
- {
144
- inclusive_output = input;
145
- #pragma unroll
146
- for (int STEP = 0; STEP < STEPS; STEP++) {
147
- int offset = 1 << STEP;
148
- T temp = cub::ShuffleDown<LOGICAL_WARP_THREADS>(
149
- inclusive_output, offset, LOGICAL_WARP_THREADS - 1, member_mask
150
- );
151
- // Perform scan op if from a valid peer
152
- inclusive_output = static_cast<int>(lane_id) >= LOGICAL_WARP_THREADS - offset
153
- ? inclusive_output : scan_op(temp, inclusive_output);
154
- }
155
- }
156
-
157
- /// Exclusive scan
158
- // Get exclusive from inclusive
159
- template <typename ScanOpT>
160
- __device__ __forceinline__ void ExclusiveReverseScan(
161
- T input, ///< [in] Calling thread's input item.
162
- T &exclusive_output, ///< [out] Calling thread's output item. May be aliased with \p input.
163
- ScanOpT scan_op, ///< [in] Binary scan operator
164
- T &warp_aggregate) ///< [out] Warp-wide aggregate reduction of input items.
165
- {
166
- T inclusive_output;
167
- InclusiveReverseScan(input, inclusive_output, scan_op);
168
- warp_aggregate = cub::ShuffleIndex<LOGICAL_WARP_THREADS>(inclusive_output, 0, member_mask);
169
- // initial value unknown
170
- exclusive_output = cub::ShuffleDown<LOGICAL_WARP_THREADS>(
171
- inclusive_output, 1, LOGICAL_WARP_THREADS - 1, member_mask
172
- );
173
- }
174
-
175
- /**
176
- * \brief Computes both inclusive and exclusive reverse scans using the specified binary scan functor across the calling warp. Because no initial value is supplied, the \p exclusive_output computed for the last <em>warp-lane</em> is undefined.
177
- */
178
- template <typename ScanOpT>
179
- __device__ __forceinline__ void ReverseScan(
180
- T input, ///< [in] Calling thread's input item.
181
- T &inclusive_output, ///< [out] Calling thread's inclusive-scan output item.
182
- T &exclusive_output, ///< [out] Calling thread's exclusive-scan output item.
183
- ScanOpT scan_op) ///< [in] Binary scan operator
184
- {
185
- InclusiveReverseScan(input, inclusive_output, scan_op);
186
- // initial value unknown
187
- exclusive_output = cub::ShuffleDown<LOGICAL_WARP_THREADS>(
188
- inclusive_output, 1, LOGICAL_WARP_THREADS - 1, member_mask
189
- );
190
- }
191
-
192
- };
193
-
194
- /**
195
- * \brief BlockReverseScan provides variants of raking-based parallel postfix scan across a CUDA thread block.
196
- */
197
- template <
198
- typename T, ///< Data type being scanned
199
- int BLOCK_DIM_X, ///< The thread block length in threads along the X dimension
200
- bool MEMOIZE=false ///< Whether or not to buffer outer raking scan partials to incur fewer shared memory reads at the expense of higher register pressure
201
- >
202
- struct BlockReverseScan {
203
- //---------------------------------------------------------------------
204
- // Types and constants
205
- //---------------------------------------------------------------------
206
-
207
- /// Constants
208
- /// The thread block size in threads
209
- static constexpr int BLOCK_THREADS = BLOCK_DIM_X;
210
-
211
- /// Layout type for padded thread block raking grid
212
- using BlockRakingLayout = cub::BlockRakingLayout<T, BLOCK_THREADS>;
213
- // The number of reduction elements is not a multiple of the number of raking threads for now
214
- static_assert(BlockRakingLayout::UNGUARDED);
215
-
216
- /// Number of raking threads
217
- static constexpr int RAKING_THREADS = BlockRakingLayout::RAKING_THREADS;
218
- /// Number of raking elements per warp synchronous raking thread
219
- static constexpr int SEGMENT_LENGTH = BlockRakingLayout::SEGMENT_LENGTH;
220
- /// Cooperative work can be entirely warp synchronous
221
- static constexpr bool WARP_SYNCHRONOUS = (int(BLOCK_THREADS) == int(RAKING_THREADS));
222
-
223
- /// WarpReverseScan utility type
224
- using WarpReverseScan = WarpReverseScan<T, RAKING_THREADS>;
225
-
226
- /// Shared memory storage layout type
227
- struct _TempStorage {
228
- typename BlockRakingLayout::TempStorage raking_grid; ///< Padded thread block raking grid
229
- };
230
-
231
-
232
- /// Alias wrapper allowing storage to be unioned
233
- struct TempStorage : cub::Uninitialized<_TempStorage> {};
234
-
235
-
236
- //---------------------------------------------------------------------
237
- // Per-thread fields
238
- //---------------------------------------------------------------------
239
-
240
- // Thread fields
241
- _TempStorage &temp_storage;
242
- unsigned int linear_tid;
243
- T cached_segment[SEGMENT_LENGTH];
244
-
245
-
246
- //---------------------------------------------------------------------
247
- // Utility methods
248
- //---------------------------------------------------------------------
249
-
250
- /// Performs upsweep raking reduction, returning the aggregate
251
- template <typename ScanOp>
252
- __device__ __forceinline__ T Upsweep(ScanOp scan_op) {
253
- T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
254
- // Read data into registers
255
- #pragma unroll
256
- for (int i = 0; i < SEGMENT_LENGTH; ++i) { cached_segment[i] = smem_raking_ptr[i]; }
257
- T raking_partial = cached_segment[SEGMENT_LENGTH - 1];
258
- #pragma unroll
259
- for (int i = SEGMENT_LENGTH - 2; i >= 0; --i) {
260
- raking_partial = scan_op(raking_partial, cached_segment[i]);
261
- }
262
- return raking_partial;
263
- }
264
-
265
-
266
- /// Performs exclusive downsweep raking scan
267
- template <typename ScanOp>
268
- __device__ __forceinline__ void ExclusiveDownsweep(
269
- ScanOp scan_op,
270
- T raking_partial)
271
- {
272
- T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
273
- // Read data back into registers
274
- if (!MEMOIZE) {
275
- #pragma unroll
276
- for (int i = 0; i < SEGMENT_LENGTH; ++i) { cached_segment[i] = smem_raking_ptr[i]; }
277
- }
278
- ThreadReverseScanExclusive(cached_segment, cached_segment, scan_op, raking_partial);
279
- // Write data back to smem
280
- #pragma unroll
281
- for (int i = 0; i < SEGMENT_LENGTH; ++i) { smem_raking_ptr[i] = cached_segment[i]; }
282
- }
283
-
284
-
285
- //---------------------------------------------------------------------
286
- // Constructors
287
- //---------------------------------------------------------------------
288
-
289
- /// Constructor
290
- __device__ __forceinline__ BlockReverseScan(
291
- TempStorage &temp_storage)
292
- :
293
- temp_storage(temp_storage.Alias()),
294
- linear_tid(cub::RowMajorTid(BLOCK_DIM_X, 1, 1))
295
- {}
296
-
297
-
298
- /// Computes an exclusive thread block-wide postfix scan using the specified binary \p scan_op functor. Each thread contributes one input element. the call-back functor \p block_postfix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically postfixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
299
- template <
300
- typename ScanOp,
301
- typename BlockPostfixCallbackOp>
302
- __device__ __forceinline__ void ExclusiveReverseScan(
303
- T input, ///< [in] Calling thread's input item
304
- T &exclusive_output, ///< [out] Calling thread's output item (may be aliased to \p input)
305
- ScanOp scan_op, ///< [in] Binary scan operator
306
- BlockPostfixCallbackOp &block_postfix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a thread block-wide postfix to be applied to all inputs.
307
- {
308
- if (WARP_SYNCHRONOUS) {
309
- // Short-circuit directly to warp-synchronous scan
310
- T block_aggregate;
311
- WarpReverseScan warp_scan;
312
- warp_scan.ExclusiveReverseScan(input, exclusive_output, scan_op, block_aggregate);
313
- // Obtain warp-wide postfix in lane0, then broadcast to other lanes
314
- T block_postfix = block_postfix_callback_op(block_aggregate);
315
- block_postfix = warp_scan.Broadcast(block_postfix, 0);
316
- exclusive_output = linear_tid == BLOCK_THREADS - 1 ? block_postfix : scan_op(block_postfix, exclusive_output);
317
- } else {
318
- // Place thread partial into shared memory raking grid
319
- T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
320
- detail::uninitialized_copy(placement_ptr, input);
321
- cub::CTA_SYNC();
322
- // Reduce parallelism down to just raking threads
323
- if (linear_tid < RAKING_THREADS) {
324
- WarpReverseScan warp_scan;
325
- // Raking upsweep reduction across shared partials
326
- T upsweep_partial = Upsweep(scan_op);
327
- // Warp-synchronous scan
328
- T exclusive_partial, block_aggregate;
329
- warp_scan.ExclusiveReverseScan(upsweep_partial, exclusive_partial, scan_op, block_aggregate);
330
- // Obtain block-wide postfix in lane0, then broadcast to other lanes
331
- T block_postfix = block_postfix_callback_op(block_aggregate);
332
- block_postfix = warp_scan.Broadcast(block_postfix, 0);
333
- // Update postfix with warpscan exclusive partial
334
- T downsweep_postfix = linear_tid == RAKING_THREADS - 1
335
- ? block_postfix : scan_op(block_postfix, exclusive_partial);
336
- // Exclusive raking downsweep scan
337
- ExclusiveDownsweep(scan_op, downsweep_postfix);
338
- }
339
- cub::CTA_SYNC();
340
- // Grab thread postfix from shared memory
341
- exclusive_output = *placement_ptr;
342
-
343
- // // Compute warp scan in each warp.
344
- // // The exclusive output from the last lane in each warp is invalid.
345
- // T inclusive_output;
346
- // WarpReverseScan warp_scan;
347
- // warp_scan.ReverseScan(input, inclusive_output, exclusive_output, scan_op);
348
-
349
- // // Compute the warp-wide postfix and block-wide aggregate for each warp. Warp postfix for the last warp is invalid.
350
- // T block_aggregate;
351
- // T warp_postfix = ComputeWarpPostfix(scan_op, inclusive_output, block_aggregate);
352
-
353
- // // Apply warp postfix to our lane's partial
354
- // if (warp_id != 0) {
355
- // exclusive_output = scan_op(warp_postfix, exclusive_output);
356
- // if (lane_id == 0) { exclusive_output = warp_postfix; }
357
- // }
358
-
359
- // // Use the first warp to determine the thread block postfix, returning the result in lane0
360
- // if (warp_id == 0) {
361
- // T block_postfix = block_postfix_callback_op(block_aggregate);
362
- // if (lane_id == 0) {
363
- // // Share the postfix with all threads
364
- // detail::uninitialized_copy(&temp_storage.block_postfix,
365
- // block_postfix);
366
-
367
- // exclusive_output = block_postfix; // The block postfix is the exclusive output for tid0
368
- // }
369
- // }
370
-
371
- // cub::CTA_SYNC();
372
-
373
- // // Incorporate thread block postfix into outputs
374
- // T block_postfix = temp_storage.block_postfix;
375
- // if (linear_tid > 0) { exclusive_output = scan_op(block_postfix, exclusive_output); }
376
- }
377
- }
378
-
379
-
380
- /**
381
- * \brief Computes an inclusive block-wide postfix scan using the specified binary \p scan_op functor. Each thread contributes an array of consecutive input elements. the call-back functor \p block_postfix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically postfixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
382
- */
383
- template <
384
- int ITEMS_PER_THREAD,
385
- typename ScanOp,
386
- typename BlockPostfixCallbackOp>
387
- __device__ __forceinline__ void InclusiveReverseScan(
388
- T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
389
- T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
390
- ScanOp scan_op, ///< [in] Binary scan functor
391
- BlockPostfixCallbackOp &block_postfix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a block-wide postfix to be applied to the logical input sequence.
392
- {
393
- // Reduce consecutive thread items in registers
394
- T thread_postfix = ThreadReverseReduce(input, scan_op);
395
- // Exclusive thread block-scan
396
- ExclusiveReverseScan(thread_postfix, thread_postfix, scan_op, block_postfix_callback_op);
397
- // Inclusive scan in registers with postfix as seed
398
- ThreadReverseScanInclusive(input, output, scan_op, thread_postfix);
399
- }
400
-
401
- };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan.cpp DELETED
@@ -1,497 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #include <ATen/cuda/CUDAContext.h>
6
- #include <c10/cuda/CUDAGuard.h>
7
- #include <torch/extension.h>
8
- #include <vector>
9
-
10
- #include "selective_scan.h"
11
-
12
- #define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
13
-
14
- #define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
15
- if (ITYPE == at::ScalarType::Half) { \
16
- using input_t = at::Half; \
17
- __VA_ARGS__(); \
18
- } else if (ITYPE == at::ScalarType::BFloat16) { \
19
- using input_t = at::BFloat16; \
20
- __VA_ARGS__(); \
21
- } else if (ITYPE == at::ScalarType::Float) { \
22
- using input_t = float; \
23
- __VA_ARGS__(); \
24
- } else { \
25
- AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
26
- }
27
-
28
- #define DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(WTYPE, NAME, ...) \
29
- if (WTYPE == at::ScalarType::Half) { \
30
- using weight_t = at::Half; \
31
- __VA_ARGS__(); \
32
- } else if (WTYPE == at::ScalarType::BFloat16) { \
33
- using weight_t = at::BFloat16; \
34
- __VA_ARGS__(); \
35
- } else if (WTYPE == at::ScalarType::Float) { \
36
- using weight_t = float; \
37
- __VA_ARGS__(); \
38
- } else { \
39
- AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
40
- }
41
-
42
- #define DISPATCH_WTYPE_FLOAT_AND_COMPLEX(WTYPE, NAME, ...) \
43
- if (WTYPE == at::ScalarType::Float) { \
44
- using weight_t = float; \
45
- __VA_ARGS__(); \
46
- } else if (WTYPE == at::ScalarType::ComplexFloat) { \
47
- using weight_t = c10::complex<float>; \
48
- __VA_ARGS__(); \
49
- } else { \
50
- AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
51
- }
52
-
53
- template<typename input_t, typename weight_t>
54
- void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream);
55
-
56
- template <typename input_t, typename weight_t>
57
- void selective_scan_bwd_cuda(SSMParamsBwd &params, cudaStream_t stream);
58
-
59
- void set_ssm_params_fwd(SSMParamsBase &params,
60
- // sizes
61
- const size_t batch,
62
- const size_t dim,
63
- const size_t seqlen,
64
- const size_t dstate,
65
- const size_t n_groups,
66
- const size_t n_chunks,
67
- const bool is_variable_B,
68
- const bool is_variable_C,
69
- // device pointers
70
- const at::Tensor u,
71
- const at::Tensor delta,
72
- const at::Tensor A,
73
- const at::Tensor B,
74
- const at::Tensor C,
75
- const at::Tensor out,
76
- const at::Tensor z,
77
- const at::Tensor out_z,
78
- void* D_ptr,
79
- void* delta_bias_ptr,
80
- void* x_ptr,
81
- bool has_z,
82
- bool delta_softplus) {
83
-
84
- // Reset the parameters
85
- memset(&params, 0, sizeof(params));
86
-
87
- params.batch = batch;
88
- params.dim = dim;
89
- params.seqlen = seqlen;
90
- params.dstate = dstate;
91
- params.n_groups = n_groups;
92
- params.n_chunks = n_chunks;
93
- params.dim_ngroups_ratio = dim / n_groups;
94
-
95
- params.delta_softplus = delta_softplus;
96
-
97
- params.is_variable_B = is_variable_B;
98
- params.is_variable_C = is_variable_C;
99
-
100
- // Set the pointers and strides.
101
- params.u_ptr = u.data_ptr();
102
- params.delta_ptr = delta.data_ptr();
103
- params.A_ptr = A.data_ptr();
104
- params.B_ptr = B.data_ptr();
105
- params.C_ptr = C.data_ptr();
106
- params.D_ptr = D_ptr;
107
- params.delta_bias_ptr = delta_bias_ptr;
108
- params.out_ptr = out.data_ptr();
109
- params.x_ptr = x_ptr;
110
- params.z_ptr = has_z ? z.data_ptr() : nullptr;
111
- params.out_z_ptr = has_z ? out_z.data_ptr() : nullptr;
112
- // All stride are in elements, not bytes.
113
- params.A_d_stride = A.stride(0);
114
- params.A_dstate_stride = A.stride(1);
115
- if (!is_variable_B) {
116
- params.B_d_stride = B.stride(0);
117
- } else {
118
- params.B_batch_stride = B.stride(0);
119
- params.B_group_stride = B.stride(1);
120
- }
121
- params.B_dstate_stride = !is_variable_B ? B.stride(1) : B.stride(2);
122
- if (!is_variable_C) {
123
- params.C_d_stride = C.stride(0);
124
- } else {
125
- params.C_batch_stride = C.stride(0);
126
- params.C_group_stride = C.stride(1);
127
- }
128
- params.C_dstate_stride = !is_variable_C ? C.stride(1) : C.stride(2);
129
- params.u_batch_stride = u.stride(0);
130
- params.u_d_stride = u.stride(1);
131
- params.delta_batch_stride = delta.stride(0);
132
- params.delta_d_stride = delta.stride(1);
133
- if (has_z) {
134
- params.z_batch_stride = z.stride(0);
135
- params.z_d_stride = z.stride(1);
136
- params.out_z_batch_stride = out_z.stride(0);
137
- params.out_z_d_stride = out_z.stride(1);
138
- }
139
- params.out_batch_stride = out.stride(0);
140
- params.out_d_stride = out.stride(1);
141
- }
142
-
143
- void set_ssm_params_bwd(SSMParamsBwd &params,
144
- // sizes
145
- const size_t batch,
146
- const size_t dim,
147
- const size_t seqlen,
148
- const size_t dstate,
149
- const size_t n_groups,
150
- const size_t n_chunks,
151
- const bool is_variable_B,
152
- const bool is_variable_C,
153
- // device pointers
154
- const at::Tensor u,
155
- const at::Tensor delta,
156
- const at::Tensor A,
157
- const at::Tensor B,
158
- const at::Tensor C,
159
- const at::Tensor z,
160
- const at::Tensor out,
161
- const at::Tensor out_z,
162
- void* D_ptr,
163
- void* delta_bias_ptr,
164
- void* x_ptr,
165
- const at::Tensor dout,
166
- const at::Tensor du,
167
- const at::Tensor ddelta,
168
- const at::Tensor dA,
169
- const at::Tensor dB,
170
- const at::Tensor dC,
171
- const at::Tensor dz,
172
- void* dD_ptr,
173
- void* ddelta_bias_ptr,
174
- bool has_z,
175
- bool delta_softplus,
176
- bool recompute_out_z) {
177
- // Pass in "dout" instead of "out", we're not gonna use "out" unless we have z
178
- set_ssm_params_fwd(params, batch, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
179
- u, delta, A, B, C, has_z ? out : dout,
180
- has_z ? z : dout,
181
- // If not recompute_out_z, pass dout instead of out_z.
182
- // This won't be used by the bwd kernel
183
- recompute_out_z ? out_z : dout,
184
- D_ptr, delta_bias_ptr, x_ptr, has_z, delta_softplus);
185
- if (!recompute_out_z) { params.out_z_ptr = nullptr; }
186
-
187
- // Set the pointers and strides.
188
- params.dout_ptr = dout.data_ptr();
189
- params.du_ptr = du.data_ptr();
190
- params.dA_ptr = dA.data_ptr();
191
- params.dB_ptr = dB.data_ptr();
192
- params.dC_ptr = dC.data_ptr();
193
- params.dD_ptr = dD_ptr;
194
- params.ddelta_ptr = ddelta.data_ptr();
195
- params.ddelta_bias_ptr = ddelta_bias_ptr;
196
- params.dz_ptr = has_z ? dz.data_ptr() : nullptr;
197
- // All stride are in elements, not bytes.
198
- params.dout_batch_stride = dout.stride(0);
199
- params.dout_d_stride = dout.stride(1);
200
- params.dA_d_stride = dA.stride(0);
201
- params.dA_dstate_stride = dA.stride(1);
202
- if (!is_variable_B) {
203
- params.dB_d_stride = dB.stride(0);
204
- } else {
205
- params.dB_batch_stride = dB.stride(0);
206
- params.dB_group_stride = dB.stride(1);
207
- }
208
- params.dB_dstate_stride = !is_variable_B ? dB.stride(1) : dB.stride(2);
209
- if (!is_variable_C) {
210
- params.dC_d_stride = dC.stride(0);
211
- } else {
212
- params.dC_batch_stride = dC.stride(0);
213
- params.dC_group_stride = dC.stride(1);
214
- }
215
- params.dC_dstate_stride = !is_variable_C ? dC.stride(1) : dC.stride(2);
216
- params.du_batch_stride = du.stride(0);
217
- params.du_d_stride = du.stride(1);
218
- params.ddelta_batch_stride = ddelta.stride(0);
219
- params.ddelta_d_stride = ddelta.stride(1);
220
- if (has_z) {
221
- params.dz_batch_stride = dz.stride(0);
222
- params.dz_d_stride = dz.stride(1);
223
- }
224
- }
225
-
226
- std::vector<at::Tensor>
227
- selective_scan_fwd(const at::Tensor &u, const at::Tensor &delta,
228
- const at::Tensor &A, const at::Tensor &B, const at::Tensor &C,
229
- const c10::optional<at::Tensor> &D_,
230
- const c10::optional<at::Tensor> &z_,
231
- const c10::optional<at::Tensor> &delta_bias_,
232
- bool delta_softplus) {
233
- auto input_type = u.scalar_type();
234
- auto weight_type = A.scalar_type();
235
- TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
236
- TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat);
237
-
238
- const bool is_variable_B = B.dim() >= 3;
239
- const bool is_variable_C = C.dim() >= 3;
240
- const bool is_complex = weight_type == at::ScalarType::ComplexFloat;
241
-
242
- TORCH_CHECK(delta.scalar_type() == input_type);
243
- TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
244
- TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));
245
-
246
- TORCH_CHECK(u.is_cuda());
247
- TORCH_CHECK(delta.is_cuda());
248
- TORCH_CHECK(A.is_cuda());
249
- TORCH_CHECK(B.is_cuda());
250
- TORCH_CHECK(C.is_cuda());
251
-
252
- TORCH_CHECK(u.stride(-1) == 1 || u.size(-1) == 1);
253
- TORCH_CHECK(delta.stride(-1) == 1 || delta.size(-1) == 1);
254
-
255
- const auto sizes = u.sizes();
256
- const int batch_size = sizes[0];
257
- const int dim = sizes[1];
258
- const int seqlen = sizes[2];
259
- const int dstate = A.size(1);
260
- const int n_groups = is_variable_B ? B.size(1) : 1;
261
-
262
- TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256");
263
-
264
- CHECK_SHAPE(u, batch_size, dim, seqlen);
265
- CHECK_SHAPE(delta, batch_size, dim, seqlen);
266
- CHECK_SHAPE(A, dim, dstate);
267
- if (!is_variable_B) {
268
- CHECK_SHAPE(B, dim, dstate);
269
- } else {
270
- CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2);
271
- TORCH_CHECK(B.stride(-1) == 1 || B.size(-1) == 1);
272
- }
273
- if (!is_variable_C) {
274
- CHECK_SHAPE(C, dim, dstate);
275
- } else {
276
- CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2);
277
- TORCH_CHECK(C.stride(-1) == 1 || C.size(-1) == 1);
278
- }
279
-
280
- if (D_.has_value()) {
281
- auto D = D_.value();
282
- TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
283
- TORCH_CHECK(D.is_cuda());
284
- TORCH_CHECK(D.stride(-1) == 1 || D.size(-1) == 1);
285
- CHECK_SHAPE(D, dim);
286
- }
287
-
288
- if (delta_bias_.has_value()) {
289
- auto delta_bias = delta_bias_.value();
290
- TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
291
- TORCH_CHECK(delta_bias.is_cuda());
292
- TORCH_CHECK(delta_bias.stride(-1) == 1 || delta_bias.size(-1) == 1);
293
- CHECK_SHAPE(delta_bias, dim);
294
- }
295
-
296
- at::Tensor z, out_z;
297
- const bool has_z = z_.has_value();
298
- if (has_z) {
299
- z = z_.value();
300
- TORCH_CHECK(z.scalar_type() == input_type);
301
- TORCH_CHECK(z.is_cuda());
302
- TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
303
- CHECK_SHAPE(z, batch_size, dim, seqlen);
304
- out_z = torch::empty_like(z);
305
- }
306
-
307
- const int n_chunks = (seqlen + 2048 - 1) / 2048;
308
- // const int n_chunks = (seqlen + 1024 - 1) / 1024;
309
- // at::Tensor out = torch::empty_like(u);
310
- // Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout
311
- at::Tensor out = torch::empty_like(delta);
312
- at::Tensor x;
313
- x = torch::empty({batch_size, dim, n_chunks, dstate * 2}, u.options().dtype(weight_type));
314
-
315
- SSMParamsBase params;
316
- set_ssm_params_fwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
317
- u, delta, A, B, C, out, z, out_z,
318
- D_.has_value() ? D_.value().data_ptr() : nullptr,
319
- delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
320
- x.data_ptr(),
321
- has_z,
322
- delta_softplus);
323
-
324
- // Otherwise the kernel will be launched from cuda:0 device
325
- // Cast to char to avoid compiler warning about narrowing
326
- at::cuda::CUDAGuard device_guard{(char)u.get_device()};
327
- auto stream = at::cuda::getCurrentCUDAStream().stream();
328
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] {
329
- DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_fwd", [&] {
330
- selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
331
- });
332
- });
333
- std::vector<at::Tensor> result = {out, x};
334
- if (has_z) { result.push_back(out_z); }
335
- return result;
336
- }
337
-
338
- std::vector<at::Tensor>
339
- selective_scan_bwd(const at::Tensor &u, const at::Tensor &delta,
340
- const at::Tensor &A, const at::Tensor &B, const at::Tensor &C,
341
- const c10::optional<at::Tensor> &D_,
342
- const c10::optional<at::Tensor> &z_,
343
- const c10::optional<at::Tensor> &delta_bias_,
344
- const at::Tensor &dout,
345
- const c10::optional<at::Tensor> &x_,
346
- const c10::optional<at::Tensor> &out_,
347
- c10::optional<at::Tensor> &dz_,
348
- bool delta_softplus,
349
- bool recompute_out_z) {
350
- auto input_type = u.scalar_type();
351
- auto weight_type = A.scalar_type();
352
- TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
353
- TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat);
354
-
355
- const bool is_variable_B = B.dim() >= 3;
356
- const bool is_variable_C = C.dim() >= 3;
357
- const bool is_complex = weight_type == at::ScalarType::ComplexFloat;
358
-
359
- TORCH_CHECK(delta.scalar_type() == input_type);
360
- TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
361
- TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));
362
- TORCH_CHECK(dout.scalar_type() == input_type);
363
-
364
- TORCH_CHECK(u.is_cuda());
365
- TORCH_CHECK(delta.is_cuda());
366
- TORCH_CHECK(A.is_cuda());
367
- TORCH_CHECK(B.is_cuda());
368
- TORCH_CHECK(C.is_cuda());
369
- TORCH_CHECK(dout.is_cuda());
370
-
371
- TORCH_CHECK(u.stride(-1) == 1 || u.size(-1) == 1);
372
- TORCH_CHECK(delta.stride(-1) == 1 || delta.size(-1) == 1);
373
- TORCH_CHECK(dout.stride(-1) == 1 || dout.size(-1) == 1);
374
-
375
- const auto sizes = u.sizes();
376
- const int batch_size = sizes[0];
377
- const int dim = sizes[1];
378
- const int seqlen = sizes[2];
379
- const int dstate = A.size(1);
380
- const int n_groups = is_variable_B ? B.size(1) : 1;
381
-
382
- TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256");
383
-
384
- CHECK_SHAPE(u, batch_size, dim, seqlen);
385
- CHECK_SHAPE(delta, batch_size, dim, seqlen);
386
- CHECK_SHAPE(A, dim, dstate);
387
- if (!is_variable_B) {
388
- CHECK_SHAPE(B, dim, dstate);
389
- } else {
390
- CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2);
391
- TORCH_CHECK(B.stride(-1) == 1 || B.size(-1) == 1);
392
- }
393
- if (!is_variable_C) {
394
- CHECK_SHAPE(C, dim, dstate);
395
- } else {
396
- CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2);
397
- TORCH_CHECK(C.stride(-1) == 1 || C.size(-1) == 1);
398
- }
399
- CHECK_SHAPE(dout, batch_size, dim, seqlen);
400
-
401
- if (D_.has_value()) {
402
- auto D = D_.value();
403
- TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
404
- TORCH_CHECK(D.is_cuda());
405
- TORCH_CHECK(D.stride(-1) == 1 || D.size(-1) == 1);
406
- CHECK_SHAPE(D, dim);
407
- }
408
-
409
- if (delta_bias_.has_value()) {
410
- auto delta_bias = delta_bias_.value();
411
- TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
412
- TORCH_CHECK(delta_bias.is_cuda());
413
- TORCH_CHECK(delta_bias.stride(-1) == 1 || delta_bias.size(-1) == 1);
414
- CHECK_SHAPE(delta_bias, dim);
415
- }
416
-
417
- at::Tensor z, out, dz, out_z;
418
- const bool has_z = z_.has_value();
419
- if (has_z) {
420
- z = z_.value();
421
- TORCH_CHECK(z.scalar_type() == input_type);
422
- TORCH_CHECK(z.is_cuda());
423
- TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
424
- CHECK_SHAPE(z, batch_size, dim, seqlen);
425
-
426
- TORCH_CHECK(out_.has_value());
427
- out = out_.value();
428
- TORCH_CHECK(out.scalar_type() == input_type);
429
- TORCH_CHECK(out.is_cuda());
430
- TORCH_CHECK(out.stride(-1) == 1 || out.size(-1) == 1);
431
- CHECK_SHAPE(out, batch_size, dim, seqlen);
432
-
433
- if (dz_.has_value()) {
434
- dz = dz_.value();
435
- TORCH_CHECK(dz.scalar_type() == input_type);
436
- TORCH_CHECK(dz.is_cuda());
437
- TORCH_CHECK(dz.stride(-1) == 1 || dz.size(-1) == 1);
438
- CHECK_SHAPE(dz, batch_size, dim, seqlen);
439
- } else {
440
- dz = torch::empty_like(z);
441
- }
442
- if (recompute_out_z) {
443
- out_z = torch::empty_like(out);
444
- }
445
- }
446
-
447
- const int n_chunks = (seqlen + 2048 - 1) / 2048;
448
- // const int n_chunks = (seqlen + 1024 - 1) / 1024;
449
- if (n_chunks > 1) { TORCH_CHECK(x_.has_value()); }
450
- if (x_.has_value()) {
451
- auto x = x_.value();
452
- TORCH_CHECK(x.scalar_type() == weight_type);
453
- TORCH_CHECK(x.is_cuda());
454
- TORCH_CHECK(x.is_contiguous());
455
- CHECK_SHAPE(x, batch_size, dim, n_chunks, 2 * dstate);
456
- }
457
-
458
- at::Tensor du = torch::empty_like(u);
459
- at::Tensor ddelta = torch::empty_like(delta);
460
- at::Tensor dA = torch::zeros_like(A);
461
- at::Tensor dB = !is_variable_B ? torch::zeros_like(B) : torch::zeros_like(B, B.options().dtype(torch::kFloat32));
462
- at::Tensor dC = !is_variable_C ? torch::zeros_like(C) : torch::zeros_like(C, C.options().dtype(torch::kFloat32));
463
- at::Tensor dD;
464
- if (D_.has_value()) { dD = torch::zeros_like(D_.value()); }
465
- at::Tensor ddelta_bias;
466
- if (delta_bias_.has_value()) { ddelta_bias = torch::zeros_like(delta_bias_.value()); }
467
-
468
- SSMParamsBwd params;
469
- set_ssm_params_bwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
470
- u, delta, A, B, C, z, out, out_z,
471
- D_.has_value() ? D_.value().data_ptr() : nullptr,
472
- delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
473
- x_.has_value() ? x_.value().data_ptr() : nullptr,
474
- dout, du, ddelta, dA, dB, dC, dz,
475
- D_.has_value() ? dD.data_ptr() : nullptr,
476
- delta_bias_.has_value() ? ddelta_bias.data_ptr() : nullptr,
477
- has_z, delta_softplus, recompute_out_z);
478
-
479
- // Otherwise the kernel will be launched from cuda:0 device
480
- // Cast to char to avoid compiler warning about narrowing
481
- at::cuda::CUDAGuard device_guard{(char)u.get_device()};
482
- auto stream = at::cuda::getCurrentCUDAStream().stream();
483
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_bwd", [&] {
484
- DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_bwd", [&] {
485
- selective_scan_bwd_cuda<input_t, weight_t>(params, stream);
486
- });
487
- });
488
- std::vector<at::Tensor> result = {du, ddelta, dA, dB.to(B.dtype()), dC.to(C.dtype()), dD, ddelta_bias};
489
- if (has_z) { result.push_back(dz); }
490
- if (recompute_out_z) { result.push_back(out_z); }
491
- return result;
492
- }
493
-
494
- PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
495
- m.def("fwd", &selective_scan_fwd, "Selective scan forward");
496
- m.def("bwd", &selective_scan_bwd, "Selective scan backward");
497
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan.h DELETED
@@ -1,101 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #pragma once
6
-
7
- ////////////////////////////////////////////////////////////////////////////////////////////////////
8
-
9
- struct SSMScanParamsBase {
10
- using index_t = uint32_t;
11
-
12
- int batch, seqlen, n_chunks;
13
- index_t a_batch_stride;
14
- index_t b_batch_stride;
15
- index_t out_batch_stride;
16
-
17
- // Common data pointers.
18
- void *__restrict__ a_ptr;
19
- void *__restrict__ b_ptr;
20
- void *__restrict__ out_ptr;
21
- void *__restrict__ x_ptr;
22
- };
23
-
24
- ////////////////////////////////////////////////////////////////////////////////////////////////////
25
-
26
- struct SSMParamsBase {
27
- using index_t = uint32_t;
28
-
29
- int batch, dim, seqlen, dstate, n_groups, n_chunks;
30
- int dim_ngroups_ratio;
31
- bool is_variable_B;
32
- bool is_variable_C;
33
-
34
- bool delta_softplus;
35
-
36
- index_t A_d_stride;
37
- index_t A_dstate_stride;
38
- index_t B_batch_stride;
39
- index_t B_d_stride;
40
- index_t B_dstate_stride;
41
- index_t B_group_stride;
42
- index_t C_batch_stride;
43
- index_t C_d_stride;
44
- index_t C_dstate_stride;
45
- index_t C_group_stride;
46
- index_t u_batch_stride;
47
- index_t u_d_stride;
48
- index_t delta_batch_stride;
49
- index_t delta_d_stride;
50
- index_t z_batch_stride;
51
- index_t z_d_stride;
52
- index_t out_batch_stride;
53
- index_t out_d_stride;
54
- index_t out_z_batch_stride;
55
- index_t out_z_d_stride;
56
-
57
- // Common data pointers.
58
- void *__restrict__ A_ptr;
59
- void *__restrict__ B_ptr;
60
- void *__restrict__ C_ptr;
61
- void *__restrict__ D_ptr;
62
- void *__restrict__ u_ptr;
63
- void *__restrict__ delta_ptr;
64
- void *__restrict__ delta_bias_ptr;
65
- void *__restrict__ out_ptr;
66
- void *__restrict__ x_ptr;
67
- void *__restrict__ z_ptr;
68
- void *__restrict__ out_z_ptr;
69
- };
70
-
71
- struct SSMParamsBwd: public SSMParamsBase {
72
- index_t dout_batch_stride;
73
- index_t dout_d_stride;
74
- index_t dA_d_stride;
75
- index_t dA_dstate_stride;
76
- index_t dB_batch_stride;
77
- index_t dB_group_stride;
78
- index_t dB_d_stride;
79
- index_t dB_dstate_stride;
80
- index_t dC_batch_stride;
81
- index_t dC_group_stride;
82
- index_t dC_d_stride;
83
- index_t dC_dstate_stride;
84
- index_t du_batch_stride;
85
- index_t du_d_stride;
86
- index_t dz_batch_stride;
87
- index_t dz_d_stride;
88
- index_t ddelta_batch_stride;
89
- index_t ddelta_d_stride;
90
-
91
- // Common data pointers.
92
- void *__restrict__ dout_ptr;
93
- void *__restrict__ dA_ptr;
94
- void *__restrict__ dB_ptr;
95
- void *__restrict__ dC_ptr;
96
- void *__restrict__ dD_ptr;
97
- void *__restrict__ du_ptr;
98
- void *__restrict__ dz_ptr;
99
- void *__restrict__ ddelta_ptr;
100
- void *__restrict__ ddelta_bias_ptr;
101
- };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan_bwd_bf16_complex.cu DELETED
@@ -1,9 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_bwd_kernel.cuh"
8
-
9
- template void selective_scan_bwd_cuda<at::BFloat16, complex_t>(SSMParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan_bwd_bf16_real.cu DELETED
@@ -1,9 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_bwd_kernel.cuh"
8
-
9
- template void selective_scan_bwd_cuda<at::BFloat16, float>(SSMParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan_bwd_fp16_complex.cu DELETED
@@ -1,9 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_bwd_kernel.cuh"
8
-
9
- template void selective_scan_bwd_cuda<at::Half, complex_t>(SSMParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan_bwd_fp16_real.cu DELETED
@@ -1,9 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_bwd_kernel.cuh"
8
-
9
- template void selective_scan_bwd_cuda<at::Half, float>(SSMParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan_bwd_fp32_complex.cu DELETED
@@ -1,9 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_bwd_kernel.cuh"
8
-
9
- template void selective_scan_bwd_cuda<float, complex_t>(SSMParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan_bwd_fp32_real.cu DELETED
@@ -1,9 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_bwd_kernel.cuh"
8
-
9
- template void selective_scan_bwd_cuda<float, float>(SSMParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan_bwd_kernel.cuh DELETED
@@ -1,531 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #pragma once
6
-
7
- #include <c10/util/BFloat16.h>
8
- #include <c10/util/Half.h>
9
- #include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
10
- #include <ATen/cuda/Atomic.cuh> // For atomicAdd on complex
11
-
12
- #include <cub/block/block_load.cuh>
13
- #include <cub/block/block_store.cuh>
14
- #include <cub/block/block_scan.cuh>
15
- #include <cub/block/block_reduce.cuh>
16
-
17
- #include "selective_scan.h"
18
- #include "selective_scan_common.h"
19
- #include "reverse_scan.cuh"
20
- #include "static_switch.h"
21
-
22
- template<typename scalar_t> __device__ __forceinline__ scalar_t conj(scalar_t x);
23
- template<> __device__ __forceinline__ float conj<float>(float x) { return x; }
24
- template<> __device__ __forceinline__ complex_t conj<complex_t>(complex_t x) { return std::conj(x); }
25
-
26
- template<int kNThreads_, int kNItems_, bool kIsEvenLen_, bool kIsVariableB_, bool kIsVariableC_,
27
- bool kDeltaSoftplus_, bool kHasZ_, typename input_t_, typename weight_t_>
28
- struct Selective_Scan_bwd_kernel_traits {
29
- static_assert(kNItems_ % 4 == 0);
30
- using input_t = input_t_;
31
- using weight_t = weight_t_;
32
- static constexpr int kNThreads = kNThreads_;
33
- static constexpr int kNItems = kNItems_;
34
- static constexpr int kNBytes = sizeof(input_t);
35
- static_assert(kNBytes == 2 || kNBytes == 4);
36
- static constexpr int kNElts = kNBytes == 4 ? 4 : std::min(8, kNItems);
37
- static_assert(kNItems % kNElts == 0);
38
- static constexpr int kNLoads = kNItems / kNElts;
39
- static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>;
40
- static constexpr bool kIsEvenLen = kIsEvenLen_;
41
- static constexpr bool kIsVariableB = kIsVariableB_;
42
- static constexpr bool kIsVariableC = kIsVariableC_;
43
- static constexpr bool kDeltaSoftplus = kDeltaSoftplus_;
44
- static constexpr bool kHasZ = kHasZ_;
45
- // Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads with float improves occupancy.
46
- // For complex this would lead to massive register spilling, so we keep it at 2.
47
- static constexpr int kMinBlocks = kNThreads == 128 && !kIsComplex ? 3 : 2;
48
- using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
49
- using scan_t = std::conditional_t<!kIsComplex, float2, float4>;
50
- using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
51
- using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
52
- using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
53
- using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
54
- using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
55
- using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads, cub::BLOCK_STORE_WARP_TRANSPOSE>;
56
- // using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
57
- using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
58
- // using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
59
- using BlockReverseScanT = BlockReverseScan<scan_t, kNThreads>;
60
- using BlockReduceT = cub::BlockReduce<scan_t, kNThreads>;
61
- using BlockReduceFloatT = cub::BlockReduce<float, kNThreads>;
62
- using BlockReduceComplexT = cub::BlockReduce<complex_t, kNThreads>;
63
- using BlockExchangeT = cub::BlockExchange<float, kNThreads, !kIsComplex ? kNItems : kNItems * 2>;
64
- static constexpr int kSmemIOSize = std::max({sizeof(typename BlockLoadT::TempStorage),
65
- sizeof(typename BlockLoadVecT::TempStorage),
66
- (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
67
- (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
68
- sizeof(typename BlockStoreT::TempStorage),
69
- sizeof(typename BlockStoreVecT::TempStorage)});
70
- static constexpr int kSmemExchangeSize = (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockExchangeT::TempStorage);
71
- static constexpr int kSmemReduceSize = sizeof(typename BlockReduceT::TempStorage);
72
- static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize + kSmemReduceSize + sizeof(typename BlockScanT::TempStorage) + sizeof(typename BlockReverseScanT::TempStorage);
73
- };
74
-
75
- template<typename Ktraits>
76
- __global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks)
77
- void selective_scan_bwd_kernel(SSMParamsBwd params) {
78
- constexpr bool kIsComplex = Ktraits::kIsComplex;
79
- constexpr bool kIsVariableB = Ktraits::kIsVariableB;
80
- constexpr bool kIsVariableC = Ktraits::kIsVariableC;
81
- constexpr bool kDeltaSoftplus = Ktraits::kDeltaSoftplus;
82
- constexpr bool kHasZ = Ktraits::kHasZ;
83
- constexpr int kNThreads = Ktraits::kNThreads;
84
- constexpr int kNItems = Ktraits::kNItems;
85
- using input_t = typename Ktraits::input_t;
86
- using weight_t = typename Ktraits::weight_t;
87
- using scan_t = typename Ktraits::scan_t;
88
-
89
- // Shared memory.
90
- extern __shared__ char smem_[];
91
- // cast to lvalue reference of expected type
92
- // char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
93
- // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
94
- // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
95
- auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
96
- auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
97
- auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
98
- auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
99
- auto& smem_exchange = *reinterpret_cast<typename Ktraits::BlockExchangeT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
100
- auto& smem_exchange1 = *reinterpret_cast<typename Ktraits::BlockExchangeT::TempStorage*>(smem_ + Ktraits::kSmemIOSize + sizeof(typename Ktraits::BlockExchangeT::TempStorage));
101
- auto& smem_reduce = *reinterpret_cast<typename Ktraits::BlockReduceT::TempStorage*>(reinterpret_cast<char *>(&smem_exchange) + Ktraits::kSmemExchangeSize);
102
- auto& smem_reduce_float = *reinterpret_cast<typename Ktraits::BlockReduceFloatT::TempStorage*>(&smem_reduce);
103
- auto& smem_reduce_complex = *reinterpret_cast<typename Ktraits::BlockReduceComplexT::TempStorage*>(&smem_reduce);
104
- auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(reinterpret_cast<char *>(&smem_reduce) + Ktraits::kSmemReduceSize);
105
- auto& smem_reverse_scan = *reinterpret_cast<typename Ktraits::BlockReverseScanT::TempStorage*>(reinterpret_cast<char *>(&smem_scan) + sizeof(typename Ktraits::BlockScanT::TempStorage));
106
- weight_t *smem_delta_a = reinterpret_cast<weight_t *>(smem_ + Ktraits::kSmemSize);
107
- scan_t *smem_running_postfix = reinterpret_cast<scan_t *>(smem_delta_a + 2 * MAX_DSTATE + kNThreads);
108
- weight_t *smem_da = reinterpret_cast<weight_t *>(smem_running_postfix + MAX_DSTATE);
109
- weight_t *smem_dbc = reinterpret_cast<weight_t *>(smem_da + MAX_DSTATE);
110
-
111
- const int batch_id = blockIdx.x;
112
- const int dim_id = blockIdx.y;
113
- const int group_id = dim_id / (params.dim_ngroups_ratio);
114
- input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride
115
- + dim_id * params.u_d_stride;
116
- input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride
117
- + dim_id * params.delta_d_stride;
118
- input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride
119
- + dim_id * params.dout_d_stride;
120
- weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * params.A_d_stride;
121
- weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * params.B_d_stride;
122
- input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride;
123
- weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * params.C_d_stride;
124
- input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride;
125
- weight_t *dA = reinterpret_cast<weight_t *>(params.dA_ptr) + dim_id * params.dA_d_stride;
126
- weight_t *dB = reinterpret_cast<weight_t *>(params.dB_ptr)
127
- + (!kIsVariableB ? dim_id * params.dB_d_stride : batch_id * (!kIsComplex ? params.dB_batch_stride : params.dB_batch_stride / 2) + group_id * params.dB_group_stride);
128
- weight_t *dC = reinterpret_cast<weight_t *>(params.dC_ptr)
129
- + (!kIsVariableC ? dim_id * params.dC_d_stride : batch_id * (!kIsComplex ? params.dC_batch_stride : params.dC_batch_stride / 2) + group_id * params.dC_group_stride);
130
- float *dD = params.dD_ptr == nullptr ? nullptr : reinterpret_cast<float *>(params.dD_ptr) + dim_id;
131
- float D_val = params.D_ptr == nullptr ? 0 : reinterpret_cast<float *>(params.D_ptr)[dim_id];
132
- float *ddelta_bias = params.ddelta_bias_ptr == nullptr ? nullptr : reinterpret_cast<float *>(params.ddelta_bias_ptr) + dim_id;
133
- float delta_bias = params.delta_bias_ptr == nullptr ? 0 : reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id];
134
- scan_t *x = params.x_ptr == nullptr
135
- ? nullptr
136
- : reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id) * (params.n_chunks) * params.dstate;
137
- float dD_val = 0;
138
- float ddelta_bias_val = 0;
139
-
140
- constexpr int kChunkSize = kNThreads * kNItems;
141
- u += (params.n_chunks - 1) * kChunkSize;
142
- delta += (params.n_chunks - 1) * kChunkSize;
143
- dout += (params.n_chunks - 1) * kChunkSize;
144
- Bvar += (params.n_chunks - 1) * kChunkSize * (!kIsComplex ? 1 : 2);
145
- Cvar += (params.n_chunks - 1) * kChunkSize * (!kIsComplex ? 1 : 2);
146
- for (int chunk = params.n_chunks - 1; chunk >= 0; --chunk) {
147
- input_t u_vals[kNItems];
148
- input_t delta_vals_load[kNItems];
149
- input_t dout_vals_load[kNItems];
150
- __syncthreads();
151
- load_input<Ktraits>(u, u_vals, smem_load, params.seqlen - chunk * kChunkSize);
152
- u -= kChunkSize;
153
- __syncthreads();
154
- load_input<Ktraits>(delta, delta_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
155
- // Will reload delta at the same location if kDeltaSoftplus
156
- if constexpr (!kDeltaSoftplus) { delta -= kChunkSize; }
157
- __syncthreads();
158
- load_input<Ktraits>(dout, dout_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
159
- dout -= kChunkSize;
160
-
161
- float dout_vals[kNItems], delta_vals[kNItems];
162
- #pragma unroll
163
- for (int i = 0; i < kNItems; ++i) {
164
- dout_vals[i] = float(dout_vals_load[i]);
165
- delta_vals[i] = float(delta_vals_load[i]) + delta_bias;
166
- if constexpr (kDeltaSoftplus) {
167
- delta_vals[i] = delta_vals[i] <= 20.f ? log1pf(expf(delta_vals[i])) : delta_vals[i];
168
- }
169
- }
170
-
171
- if constexpr (kHasZ) {
172
- input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride
173
- + dim_id * params.z_d_stride + chunk * kChunkSize;
174
- input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
175
- + dim_id * params.out_d_stride + chunk * kChunkSize;
176
- input_t *dz = reinterpret_cast<input_t *>(params.dz_ptr) + batch_id * params.dz_batch_stride
177
- + dim_id * params.dz_d_stride + chunk * kChunkSize;
178
- input_t z_vals[kNItems], out_vals[kNItems];
179
- __syncthreads();
180
- load_input<Ktraits>(z, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
181
- __syncthreads();
182
- load_input<Ktraits>(out, out_vals, smem_load, params.seqlen - chunk * kChunkSize);
183
- float dz_vals[kNItems], z_silu_vals[kNItems];
184
- #pragma unroll
185
- for (int i = 0; i < kNItems; ++i) {
186
- float z_val = z_vals[i];
187
- float z_sigmoid_val = 1.0f / (1.0f + expf(-z_val));
188
- z_silu_vals[i] = z_val * z_sigmoid_val;
189
- dz_vals[i] = dout_vals[i] * float(out_vals[i]) * z_sigmoid_val
190
- * (1.0f + z_val * (1.0f - z_sigmoid_val));
191
- dout_vals[i] *= z_silu_vals[i];
192
- }
193
- __syncthreads();
194
- store_output<Ktraits>(dz, dz_vals, smem_store, params.seqlen - chunk * kChunkSize);
195
- if (params.out_z_ptr != nullptr) { // Recompute and store out_z
196
- float out_z_vals[kNItems];
197
- #pragma unroll
198
- for (int i = 0; i < kNItems; ++i) { out_z_vals[i] = float(out_vals[i]) * z_silu_vals[i]; }
199
- // if (blockIdx.x == 0 && blockIdx.y == 0 && threadIdx.x == 0) {
200
- // printf("out_val=%f, z_silu_val = %f, out_z_val = %f\n", float(out_vals[0]), z_silu_vals[0], out_z_vals[0]);
201
- // }
202
- input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride
203
- + dim_id * params.out_z_d_stride + chunk * kChunkSize;
204
- __syncthreads();
205
- store_output<Ktraits>(out_z, out_z_vals, smem_store, params.seqlen - chunk * kChunkSize);
206
- }
207
- }
208
-
209
- float du_vals[kNItems];
210
- #pragma unroll
211
- for (int i = 0; i < kNItems; ++i) { du_vals[i] = D_val * dout_vals[i]; }
212
- #pragma unroll
213
- for (int i = 0; i < kNItems; ++i) { dD_val += dout_vals[i] * float(u_vals[i]); }
214
-
215
- float ddelta_vals[kNItems] = {0};
216
- __syncthreads();
217
- for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
218
- const weight_t A_val = A[state_idx * params.A_dstate_stride];
219
- // Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
220
- weight_t A_scaled;
221
- constexpr float kLog2e = M_LOG2E;
222
- if constexpr (!kIsComplex) {
223
- A_scaled = A_val * kLog2e;
224
- } else {
225
- A_scaled = complex_t(A_val.real_ * kLog2e, A_val.imag_);
226
- }
227
- weight_t B_val, C_val;
228
- weight_t B_vals[kNItems], C_vals[kNItems];
229
- if constexpr (!kIsVariableB) {
230
- B_val = B[state_idx * params.B_dstate_stride];
231
- } else {
232
- load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
233
- smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
234
- }
235
- if constexpr (!kIsVariableC) {
236
- C_val = C[state_idx * params.C_dstate_stride];
237
- } else {
238
- auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
239
- load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
240
- smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
241
- }
242
- // const weight_t A_val = smem_a[state_idx];
243
- scan_t thread_data[kNItems], thread_reverse_data[kNItems];
244
- if constexpr (!kIsComplex) {
245
- #pragma unroll
246
- for (int i = 0; i < kNItems; ++i) {
247
- const float delta_a_exp = exp2f(delta_vals[i] * A_scaled);
248
- thread_data[i] = make_float2(delta_a_exp, !kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]);
249
- if (i == 0) {
250
- smem_delta_a[threadIdx.x == 0 ? state_idx + (chunk % 2) * MAX_DSTATE : threadIdx.x + 2 * MAX_DSTATE] = delta_a_exp;
251
- } else {
252
- thread_reverse_data[i - 1].x = delta_a_exp;
253
- }
254
- thread_reverse_data[i].y = dout_vals[i] *
255
- (!kIsVariableC
256
- ? (!kIsVariableB ? B_val * C_val : C_val)
257
- : (!kIsVariableB ? B_val * C_vals[i] : C_vals[i]));
258
- }
259
- __syncthreads();
260
- thread_reverse_data[kNItems - 1].x = threadIdx.x == kNThreads - 1
261
- ? (chunk == params.n_chunks - 1 ? 1.f : smem_delta_a[state_idx + ((chunk + 1) % 2) * MAX_DSTATE])
262
- : smem_delta_a[threadIdx.x + 1 + 2 * MAX_DSTATE];
263
- // Initialize running total
264
- scan_t running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? x[(chunk - 1) * params.dstate + state_idx] : make_float2(1.f, 0.f);
265
- SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
266
- Ktraits::BlockScanT(smem_scan).InclusiveScan(
267
- thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
268
- );
269
- scan_t running_postfix = chunk < params.n_chunks - 1 && threadIdx.x % 32 == 0 ? smem_running_postfix[state_idx] : make_float2(1.f, 0.f);
270
- SSMScanPrefixCallbackOp<weight_t> postfix_op(running_postfix);
271
- Ktraits::BlockReverseScanT(smem_reverse_scan).InclusiveReverseScan(
272
- thread_reverse_data, thread_reverse_data, SSMScanOp<weight_t>(), postfix_op
273
- );
274
- if (threadIdx.x == 0) { smem_running_postfix[state_idx] = postfix_op.running_prefix; }
275
- weight_t dA_val = 0, dBC_val = 0;
276
- weight_t dB_vals[kNItems], dC_vals[kNItems];
277
- #pragma unroll
278
- for (int i = 0; i < kNItems; ++i) {
279
- const float dx = thread_reverse_data[i].y;
280
- const float ddelta_u = !kIsVariableB ? dx : dx * B_vals[i];
281
- du_vals[i] += ddelta_u * delta_vals[i];
282
- const float a = thread_data[i].y - (!kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]);
283
- ddelta_vals[i] += ddelta_u * float(u_vals[i]) + dx * A_val * a;
284
- dA_val += dx * delta_vals[i] * a;
285
- if constexpr (!kIsVariableB || !kIsVariableC) {
286
- if constexpr (!kIsVariableB) { // dBC_val is dB_val
287
- dBC_val += dout_vals[i] * (!kIsVariableC ? thread_data[i].y : thread_data[i].y * C_vals[i]);
288
- } else { // dBC_val is dC_val
289
- dBC_val += dout_vals[i] * thread_data[i].y;
290
- }
291
- }
292
- if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
293
- if constexpr (kIsVariableC) {
294
- dC_vals[i] = dout_vals[i] * (!kIsVariableB ? thread_data[i].y * B_val : thread_data[i].y);
295
- }
296
- }
297
- // Block-exchange to make the atomicAdd's coalesced, otherwise they're much slower
298
- if constexpr (kIsVariableB || kIsVariableC) {
299
- if constexpr (kIsVariableB) {
300
- Ktraits::BlockExchangeT(smem_exchange).BlockedToStriped(dB_vals, dB_vals);
301
- }
302
- if constexpr (kIsVariableC) {
303
- auto &smem_exchange_C = !kIsVariableB ? smem_exchange : smem_exchange1;
304
- Ktraits::BlockExchangeT(smem_exchange_C).BlockedToStriped(dC_vals, dC_vals);
305
- }
306
- const int seqlen_remaining = params.seqlen - chunk * kChunkSize - threadIdx.x;
307
- weight_t *dB_cur = dB + state_idx * params.dB_dstate_stride + chunk * kChunkSize + threadIdx.x;
308
- weight_t *dC_cur = dC + state_idx * params.dC_dstate_stride + chunk * kChunkSize + threadIdx.x;
309
- #pragma unroll
310
- for (int i = 0; i < kNItems; ++i) {
311
- if (i * kNThreads < seqlen_remaining) {
312
- if constexpr (kIsVariableB) { gpuAtomicAdd(dB_cur + i * kNThreads, dB_vals[i]); }
313
- if constexpr (kIsVariableC) { gpuAtomicAdd(dC_cur + i * kNThreads, dC_vals[i]); }
314
- }
315
- }
316
- }
317
- if constexpr (!kIsVariableB || !kIsVariableC) {
318
- float2 dA_dBC_val = make_float2(dA_val, dBC_val);
319
- dA_dBC_val = Ktraits::BlockReduceT(smem_reduce).Sum(dA_dBC_val);
320
- dA_val = dA_dBC_val.x;
321
- if (threadIdx.x == 0) {
322
- smem_dbc[state_idx] = chunk == params.n_chunks - 1 ? dA_dBC_val.y : dA_dBC_val.y + smem_dbc[state_idx];
323
- }
324
- } else {
325
- dA_val = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dA_val);
326
- }
327
- if (threadIdx.x == 0) {
328
- smem_da[state_idx] = chunk == params.n_chunks - 1 ? dA_val : dA_val + smem_da[state_idx];
329
- }
330
- } else {
331
- #pragma unroll
332
- for (int i = 0; i < kNItems; ++i) {
333
- // Pytorch's implementation of complex exp (which calls thrust) is very slow
334
- complex_t delta_a_exp = cexp2f(delta_vals[i] * A_scaled);
335
- weight_t B_delta_u_val = !kIsVariableB ? delta_vals[i] * float(u_vals[i]) : B_vals[i] * delta_vals[i] * float(u_vals[i]);
336
- thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_);
337
- if (i == 0) {
338
- smem_delta_a[threadIdx.x == 0 ? state_idx + (chunk % 2) * MAX_DSTATE : threadIdx.x + 2 * MAX_DSTATE] = delta_a_exp;
339
- } else {
340
- thread_reverse_data[i - 1].x = delta_a_exp.real_;
341
- thread_reverse_data[i - 1].y = -delta_a_exp.imag_;
342
- }
343
- complex_t dout_BC = 2 * dout_vals[i]
344
- * conj(!kIsVariableC
345
- ? (!kIsVariableB ? B_val * C_val : C_val)
346
- : (!kIsVariableB ? B_val * C_vals[i] : C_vals[i]));
347
- thread_reverse_data[i].z = dout_BC.real_;
348
- thread_reverse_data[i].w = dout_BC.imag_;
349
- }
350
- __syncthreads();
351
- complex_t delta_a_exp = threadIdx.x == kNThreads - 1
352
- ? (chunk == params.n_chunks - 1 ? 1.f : smem_delta_a[state_idx + ((chunk + 1) % 2) * MAX_DSTATE])
353
- : smem_delta_a[threadIdx.x + 1 + 2 * MAX_DSTATE];
354
- thread_reverse_data[kNItems - 1].x = delta_a_exp.real_;
355
- thread_reverse_data[kNItems - 1].y = -delta_a_exp.imag_;
356
- // Initialize running total
357
- scan_t running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? x[(chunk - 1) * params.dstate + state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
358
- SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
359
- Ktraits::BlockScanT(smem_scan).InclusiveScan(
360
- thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
361
- );
362
- scan_t running_postfix = chunk < params.n_chunks - 1 && threadIdx.x % 32 == 0 ? smem_running_postfix[state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
363
- SSMScanPrefixCallbackOp<weight_t> postfix_op(running_postfix);
364
- Ktraits::BlockReverseScanT(smem_reverse_scan).InclusiveReverseScan(
365
- thread_reverse_data, thread_reverse_data, SSMScanOp<weight_t>(), postfix_op
366
- );
367
- if (threadIdx.x == 0) { smem_running_postfix[state_idx] = postfix_op.running_prefix; }
368
- weight_t dA_val = 0, dBC_val = 0;
369
- weight_t dB_vals[kNItems], dC_vals[kNItems];
370
- #pragma unroll
371
- for (int i = 0; i < kNItems; ++i) {
372
- complex_t x = complex_t(thread_data[i].z, thread_data[i].w);
373
- complex_t dx = complex_t(thread_reverse_data[i].z, thread_reverse_data[i].w);
374
- float ddelta_u = !kIsVariableB ? dx.real_ : (dx * conj(B_vals[i])).real_;
375
- if constexpr (!kIsVariableB || !kIsVariableC) {
376
- if constexpr (!kIsVariableB) { // dBC_val is dB_val
377
- dBC_val += (2 * dout_vals[i]) * conj(!kIsVariableC ? x : x * C_vals[i]);
378
- } else { // dBC_val is dC_val
379
- dBC_val += (2 * dout_vals[i]) * conj(x);
380
- }
381
- }
382
- const complex_t a_conj = conj(x - (!kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]));
383
- du_vals[i] += ddelta_u * delta_vals[i];
384
- ddelta_vals[i] += ddelta_u * float(u_vals[i]) + (dx * conj(A_val) * a_conj).real_;
385
- dA_val += delta_vals[i] * dx * a_conj;
386
- if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
387
- if constexpr (kIsVariableC) {
388
- dC_vals[i] = (2 * dout_vals[i]) * conj(!kIsVariableB ? x * B_val : x);
389
- }
390
- }
391
- // Block-exchange to make the atomicAdd's coalesced, otherwise they're much slower
392
- if constexpr (kIsVariableB || kIsVariableC) {
393
- float dB_vals_f[kNItems * 2], dC_vals_f[kNItems * 2];
394
- if constexpr (kIsVariableB) {
395
- #pragma unroll
396
- for (int i = 0; i < kNItems; ++i) {
397
- dB_vals_f[i * 2] = dB_vals[i].real_;
398
- dB_vals_f[i * 2 + 1] = dB_vals[i].imag_;
399
- }
400
- Ktraits::BlockExchangeT(smem_exchange).BlockedToStriped(dB_vals_f, dB_vals_f);
401
- }
402
- if constexpr (kIsVariableC) {
403
- #pragma unroll
404
- for (int i = 0; i < kNItems; ++i) {
405
- dC_vals_f[i * 2] = dC_vals[i].real_;
406
- dC_vals_f[i * 2 + 1] = dC_vals[i].imag_;
407
- }
408
- auto &smem_exchange_C = !kIsVariableB ? smem_exchange : smem_exchange1;
409
- Ktraits::BlockExchangeT(smem_exchange_C).BlockedToStriped(dC_vals_f, dC_vals_f);
410
- }
411
- const int seqlen_remaining = (params.seqlen - chunk * kChunkSize) * 2 - threadIdx.x;
412
- float *dB_cur = reinterpret_cast<float *>(dB) + state_idx * params.dB_dstate_stride + chunk * kChunkSize * 2 + threadIdx.x;
413
- float *dC_cur = reinterpret_cast<float *>(dC) + state_idx * params.dC_dstate_stride + chunk * kChunkSize * 2 + threadIdx.x;
414
- #pragma unroll
415
- for (int i = 0; i < kNItems * 2; ++i) {
416
- if (i * kNThreads < seqlen_remaining) {
417
- if constexpr (kIsVariableB) { gpuAtomicAdd(dB_cur + i * kNThreads, dB_vals_f[i]); }
418
- if constexpr (kIsVariableC) { gpuAtomicAdd(dC_cur + i * kNThreads, dC_vals_f[i]); }
419
- }
420
- }
421
- }
422
- if constexpr (!kIsVariableB || !kIsVariableC) {
423
- float4 dA_dBC_val = make_float4(dA_val.real_, dA_val.imag_, dBC_val.real_, dBC_val.imag_);
424
- dA_dBC_val = Ktraits::BlockReduceT(smem_reduce).Sum(dA_dBC_val);
425
- dA_val = complex_t(dA_dBC_val.x, dA_dBC_val.y);
426
- dBC_val = complex_t(dA_dBC_val.z, dA_dBC_val.w);
427
- if (threadIdx.x == 0) {
428
- smem_dbc[state_idx] = chunk == params.n_chunks - 1 ? dBC_val : dBC_val + smem_dbc[state_idx];
429
- }
430
- } else {
431
- dA_val = Ktraits::BlockReduceComplexT(smem_reduce_complex).Sum(dA_val);
432
- }
433
- if (threadIdx.x == 0) {
434
- smem_da[state_idx] = chunk == params.n_chunks - 1 ? dA_val : dA_val + smem_da[state_idx];
435
- }
436
- }
437
- }
438
-
439
- if constexpr (kDeltaSoftplus) {
440
- __syncthreads();
441
- input_t delta_vals_load[kNItems];
442
- load_input<Ktraits>(delta, delta_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
443
- delta -= kChunkSize;
444
- #pragma unroll
445
- for (int i = 0; i < kNItems; ++i) {
446
- float delta_val = float(delta_vals_load[i]) + delta_bias;
447
- float delta_val_neg_exp = expf(-delta_val);
448
- ddelta_vals[i] = delta_val <= 20.f
449
- ? ddelta_vals[i] / (1.f + delta_val_neg_exp)
450
- : ddelta_vals[i];
451
- }
452
- }
453
- for (int i = 0; i < kNItems; ++i) { ddelta_bias_val += ddelta_vals[i]; }
454
-
455
- input_t *du = reinterpret_cast<input_t *>(params.du_ptr) + batch_id * params.du_batch_stride
456
- + dim_id * params.du_d_stride + chunk * kChunkSize;
457
- input_t *ddelta = reinterpret_cast<input_t *>(params.ddelta_ptr) + batch_id * params.ddelta_batch_stride
458
- + dim_id * params.ddelta_d_stride + chunk * kChunkSize;
459
- __syncthreads();
460
- store_output<Ktraits>(du, du_vals, smem_store, params.seqlen - chunk * kChunkSize);
461
- __syncthreads();
462
- store_output<Ktraits>(ddelta, ddelta_vals, smem_store, params.seqlen - chunk * kChunkSize);
463
-
464
- Bvar -= kChunkSize * (!kIsComplex ? 1 : 2);
465
- Cvar -= kChunkSize * (!kIsComplex ? 1 : 2);
466
- }
467
- if (params.dD_ptr != nullptr) {
468
- dD_val = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dD_val);
469
- if (threadIdx.x == 0) { gpuAtomicAdd(dD, dD_val); }
470
- }
471
- if (params.ddelta_bias_ptr != nullptr) {
472
- __syncthreads();
473
- ddelta_bias_val = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(ddelta_bias_val);
474
- if (threadIdx.x == 0) { gpuAtomicAdd(ddelta_bias, ddelta_bias_val); }
475
- }
476
- for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
477
- gpuAtomicAdd(&(dA[state_idx * params.dA_dstate_stride]), smem_da[state_idx]);
478
- weight_t dBC_val;
479
- if (!kIsVariableB || !kIsVariableC) { dBC_val = smem_dbc[state_idx]; }
480
- if constexpr (!kIsVariableB) {
481
- gpuAtomicAdd(&(dB[state_idx * params.dB_dstate_stride]),
482
- !kIsVariableC ? dBC_val * conj(C[state_idx * params.C_dstate_stride]) : dBC_val);
483
- }
484
- if constexpr (!kIsVariableC) {
485
- gpuAtomicAdd(&(dC[state_idx * params.dC_dstate_stride]),
486
- !kIsVariableB ? dBC_val * conj(B[state_idx * params.B_dstate_stride]) : dBC_val);
487
- }
488
- }
489
- }
490
-
491
- template<int kNThreads, int kNItems, typename input_t, typename weight_t>
492
- void selective_scan_bwd_launch(SSMParamsBwd &params, cudaStream_t stream) {
493
- BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
494
- BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
495
- BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
496
- BOOL_SWITCH(params.delta_softplus, kDeltaSoftplus, [&] {
497
- BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
498
- using Ktraits = Selective_Scan_bwd_kernel_traits<kNThreads, kNItems, kIsEvenLen, kIsVariableB, kIsVariableC, kDeltaSoftplus, kHasZ, input_t, weight_t>;
499
- // using Ktraits = Selective_Scan_bwd_kernel_traits<kNThreads, kNItems, true, kIsVariableB, kIsVariableC, kDeltaSoftplus, kHasZ, input_t, weight_t>;
500
- // TODO: check this
501
- constexpr int kSmemSize = Ktraits::kSmemSize + MAX_DSTATE * sizeof(typename Ktraits::scan_t) + (kNThreads + 4 * MAX_DSTATE) * sizeof(typename Ktraits::weight_t);
502
- // printf("smem_size = %d\n", kSmemSize);
503
- dim3 grid(params.batch, params.dim);
504
- auto kernel = &selective_scan_bwd_kernel<Ktraits>;
505
- if (kSmemSize >= 48 * 1024) {
506
- C10_CUDA_CHECK(cudaFuncSetAttribute(
507
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
508
- }
509
- kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
510
- C10_CUDA_KERNEL_LAUNCH_CHECK();
511
- });
512
- });
513
- });
514
- });
515
- });
516
- }
517
-
518
- template<typename input_t, typename weight_t>
519
- void selective_scan_bwd_cuda(SSMParamsBwd &params, cudaStream_t stream) {
520
- if (params.seqlen <= 128) {
521
- selective_scan_bwd_launch<32, 4, input_t, weight_t>(params, stream);
522
- } else if (params.seqlen <= 256) {
523
- selective_scan_bwd_launch<32, 8, input_t, weight_t>(params, stream);
524
- } else if (params.seqlen <= 512) {
525
- selective_scan_bwd_launch<32, 16, input_t, weight_t>(params, stream);
526
- } else if (params.seqlen <= 1024) {
527
- selective_scan_bwd_launch<64, 16, input_t, weight_t>(params, stream);
528
- } else {
529
- selective_scan_bwd_launch<128, 16, input_t, weight_t>(params, stream);
530
- }
531
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan_common.h DELETED
@@ -1,221 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #pragma once
6
-
7
- #include <cuda_bf16.h>
8
- #include <cuda_fp16.h>
9
- #include <c10/util/complex.h> // For scalar_value_type
10
-
11
- #define MAX_DSTATE 256
12
-
13
- using complex_t = c10::complex<float>;
14
-
15
- inline __device__ float2 operator+(const float2 & a, const float2 & b){
16
- return {a.x + b.x, a.y + b.y};
17
- }
18
-
19
- inline __device__ float3 operator+(const float3 &a, const float3 &b) {
20
- return {a.x + b.x, a.y + b.y, a.z + b.z};
21
- }
22
-
23
- inline __device__ float4 operator+(const float4 & a, const float4 & b){
24
- return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w};
25
- }
26
-
27
- ////////////////////////////////////////////////////////////////////////////////////////////////////
28
-
29
- template<int BYTES> struct BytesToType {};
30
-
31
- template<> struct BytesToType<16> {
32
- using Type = uint4;
33
- static_assert(sizeof(Type) == 16);
34
- };
35
-
36
- template<> struct BytesToType<8> {
37
- using Type = uint64_t;
38
- static_assert(sizeof(Type) == 8);
39
- };
40
-
41
- template<> struct BytesToType<4> {
42
- using Type = uint32_t;
43
- static_assert(sizeof(Type) == 4);
44
- };
45
-
46
- template<> struct BytesToType<2> {
47
- using Type = uint16_t;
48
- static_assert(sizeof(Type) == 2);
49
- };
50
-
51
- template<> struct BytesToType<1> {
52
- using Type = uint8_t;
53
- static_assert(sizeof(Type) == 1);
54
- };
55
-
56
- ////////////////////////////////////////////////////////////////////////////////////////////////////
57
-
58
- template<typename scalar_t, int N>
59
- struct Converter{
60
- static inline __device__ void to_float(const scalar_t (&src)[N], float (&dst)[N]) {
61
- #pragma unroll
62
- for (int i = 0; i < N; ++i) { dst[i] = src[i]; }
63
- }
64
- };
65
-
66
- template<int N>
67
- struct Converter<at::Half, N>{
68
- static inline __device__ void to_float(const at::Half (&src)[N], float (&dst)[N]) {
69
- static_assert(N % 2 == 0);
70
- auto &src2 = reinterpret_cast<const half2 (&)[N / 2]>(src);
71
- auto &dst2 = reinterpret_cast<float2 (&)[N / 2]>(dst);
72
- #pragma unroll
73
- for (int i = 0; i < N / 2; ++i) { dst2[i] = __half22float2(src2[i]); }
74
- }
75
- };
76
-
77
- #if __CUDA_ARCH__ >= 800
78
- template<int N>
79
- struct Converter<at::BFloat16, N>{
80
- static inline __device__ void to_float(const at::BFloat16 (&src)[N], float (&dst)[N]) {
81
- static_assert(N % 2 == 0);
82
- auto &src2 = reinterpret_cast<const nv_bfloat162 (&)[N / 2]>(src);
83
- auto &dst2 = reinterpret_cast<float2 (&)[N / 2]>(dst);
84
- #pragma unroll
85
- for (int i = 0; i < N / 2; ++i) { dst2[i] = __bfloat1622float2(src2[i]); }
86
- }
87
- };
88
- #endif
89
-
90
- ////////////////////////////////////////////////////////////////////////////////////////////////////
91
-
92
- // From https://stackoverflow.com/questions/9860711/cucomplex-h-and-exp
93
- // and https://forums.developer.nvidia.com/t/complex-number-exponential-function/24696
94
- __device__ __forceinline__ complex_t cexp2f(complex_t z) {
95
- float t = exp2f(z.real_);
96
- float c, s;
97
- sincosf(z.imag_, &s, &c);
98
- return complex_t(c * t, s * t);
99
- }
100
-
101
- __device__ __forceinline__ complex_t cexpf(complex_t z) {
102
- float t = expf(z.real_);
103
- float c, s;
104
- sincosf(z.imag_, &s, &c);
105
- return complex_t(c * t, s * t);
106
- }
107
-
108
- template<typename scalar_t> struct SSMScanOp;
109
-
110
- template<>
111
- struct SSMScanOp<float> {
112
- __device__ __forceinline__ float2 operator()(const float2 &ab0, const float2 &ab1) const {
113
- return make_float2(ab1.x * ab0.x, ab1.x * ab0.y + ab1.y);
114
- }
115
- };
116
-
117
- template<>
118
- struct SSMScanOp<complex_t> {
119
- __device__ __forceinline__ float4 operator()(const float4 &ab0, const float4 &ab1) const {
120
- complex_t a0 = complex_t(ab0.x, ab0.y);
121
- complex_t b0 = complex_t(ab0.z, ab0.w);
122
- complex_t a1 = complex_t(ab1.x, ab1.y);
123
- complex_t b1 = complex_t(ab1.z, ab1.w);
124
- complex_t out_a = a1 * a0;
125
- complex_t out_b = a1 * b0 + b1;
126
- return make_float4(out_a.real_, out_a.imag_, out_b.real_, out_b.imag_);
127
- }
128
- };
129
-
130
- // A stateful callback functor that maintains a running prefix to be applied
131
- // during consecutive scan operations.
132
- template <typename scalar_t> struct SSMScanPrefixCallbackOp {
133
- using scan_t = std::conditional_t<std::is_same_v<scalar_t, float>, float2, float4>;
134
- scan_t running_prefix;
135
- // Constructor
136
- __device__ SSMScanPrefixCallbackOp(scan_t running_prefix_) : running_prefix(running_prefix_) {}
137
- // Callback operator to be entered by the first warp of threads in the block.
138
- // Thread-0 is responsible for returning a value for seeding the block-wide scan.
139
- __device__ scan_t operator()(scan_t block_aggregate) {
140
- scan_t old_prefix = running_prefix;
141
- running_prefix = SSMScanOp<scalar_t>()(running_prefix, block_aggregate);
142
- return old_prefix;
143
- }
144
- };
145
-
146
- ////////////////////////////////////////////////////////////////////////////////////////////////////
147
-
148
- template<typename Ktraits>
149
- inline __device__ void load_input(typename Ktraits::input_t *u,
150
- typename Ktraits::input_t (&u_vals)[Ktraits::kNItems],
151
- typename Ktraits::BlockLoadT::TempStorage &smem_load,
152
- int seqlen) {
153
- if constexpr (Ktraits::kIsEvenLen) {
154
- auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_load);
155
- using vec_t = typename Ktraits::vec_t;
156
- Ktraits::BlockLoadVecT(smem_load_vec).Load(
157
- reinterpret_cast<vec_t*>(u),
158
- reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(u_vals)
159
- );
160
- } else {
161
- Ktraits::BlockLoadT(smem_load).Load(u, u_vals, seqlen, 0.f);
162
- }
163
- }
164
-
165
- template<typename Ktraits>
166
- inline __device__ void load_weight(typename Ktraits::input_t *Bvar,
167
- typename Ktraits::weight_t (&B_vals)[Ktraits::kNItems],
168
- typename Ktraits::BlockLoadWeightT::TempStorage &smem_load_weight,
169
- int seqlen) {
170
- constexpr int kNItems = Ktraits::kNItems;
171
- if constexpr (!Ktraits::kIsComplex) {
172
- typename Ktraits::input_t B_vals_load[kNItems];
173
- if constexpr (Ktraits::kIsEvenLen) {
174
- auto& smem_load_weight_vec = reinterpret_cast<typename Ktraits::BlockLoadWeightVecT::TempStorage&>(smem_load_weight);
175
- using vec_t = typename Ktraits::vec_t;
176
- Ktraits::BlockLoadWeightVecT(smem_load_weight_vec).Load(
177
- reinterpret_cast<vec_t*>(Bvar),
178
- reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(B_vals_load)
179
- );
180
- } else {
181
- Ktraits::BlockLoadWeightT(smem_load_weight).Load(Bvar, B_vals_load, seqlen, 0.f);
182
- }
183
- // #pragma unroll
184
- // for (int i = 0; i < kNItems; ++i) { B_vals[i] = B_vals_load[i]; }
185
- Converter<typename Ktraits::input_t, kNItems>::to_float(B_vals_load, B_vals);
186
- } else {
187
- typename Ktraits::input_t B_vals_load[kNItems * 2];
188
- if constexpr (Ktraits::kIsEvenLen) {
189
- auto& smem_load_weight_vec = reinterpret_cast<typename Ktraits::BlockLoadWeightVecT::TempStorage&>(smem_load_weight);
190
- using vec_t = typename Ktraits::vec_t;
191
- Ktraits::BlockLoadWeightVecT(smem_load_weight_vec).Load(
192
- reinterpret_cast<vec_t*>(Bvar),
193
- reinterpret_cast<vec_t(&)[Ktraits::kNLoads * 2]>(B_vals_load)
194
- );
195
- } else {
196
- Ktraits::BlockLoadWeightT(smem_load_weight).Load(Bvar, B_vals_load, seqlen, 0.f);
197
- }
198
- #pragma unroll
199
- for (int i = 0; i < kNItems; ++i) { B_vals[i] = complex_t(B_vals_load[i * 2], B_vals_load[i * 2 + 1]); }
200
- }
201
- }
202
-
203
- template<typename Ktraits>
204
- inline __device__ void store_output(typename Ktraits::input_t *out,
205
- const float (&out_vals)[Ktraits::kNItems],
206
- typename Ktraits::BlockStoreT::TempStorage &smem_store,
207
- int seqlen) {
208
- typename Ktraits::input_t write_vals[Ktraits::kNItems];
209
- #pragma unroll
210
- for (int i = 0; i < Ktraits::kNItems; ++i) { write_vals[i] = out_vals[i]; }
211
- if constexpr (Ktraits::kIsEvenLen) {
212
- auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_store);
213
- using vec_t = typename Ktraits::vec_t;
214
- Ktraits::BlockStoreVecT(smem_store_vec).Store(
215
- reinterpret_cast<vec_t*>(out),
216
- reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(write_vals)
217
- );
218
- } else {
219
- Ktraits::BlockStoreT(smem_store).Store(out, write_vals, seqlen);
220
- }
221
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan_fwd_bf16.cu DELETED
@@ -1,10 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_fwd_kernel.cuh"
8
-
9
- template void selective_scan_fwd_cuda<at::BFloat16, float>(SSMParamsBase &params, cudaStream_t stream);
10
- template void selective_scan_fwd_cuda<at::BFloat16, complex_t>(SSMParamsBase &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan_fwd_fp16.cu DELETED
@@ -1,10 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_fwd_kernel.cuh"
8
-
9
- template void selective_scan_fwd_cuda<at::Half, float>(SSMParamsBase &params, cudaStream_t stream);
10
- template void selective_scan_fwd_cuda<at::Half, complex_t>(SSMParamsBase &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan_fwd_fp32.cu DELETED
@@ -1,10 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_fwd_kernel.cuh"
8
-
9
- template void selective_scan_fwd_cuda<float, float>(SSMParamsBase &params, cudaStream_t stream);
10
- template void selective_scan_fwd_cuda<float, complex_t>(SSMParamsBase &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/selective_scan_fwd_kernel.cuh DELETED
@@ -1,345 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #pragma once
6
-
7
- #include <c10/util/BFloat16.h>
8
- #include <c10/util/Half.h>
9
- #include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
10
-
11
- #include <cub/block/block_load.cuh>
12
- #include <cub/block/block_store.cuh>
13
- #include <cub/block/block_scan.cuh>
14
-
15
- #include "selective_scan.h"
16
- #include "selective_scan_common.h"
17
- #include "static_switch.h"
18
-
19
- template<int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_,
20
- bool kIsVariableB_, bool kIsVariableC_,
21
- bool kHasZ_, typename input_t_, typename weight_t_>
22
- struct Selective_Scan_fwd_kernel_traits {
23
- static_assert(kNItems_ % 4 == 0);
24
- using input_t = input_t_;
25
- using weight_t = weight_t_;
26
- static constexpr int kNThreads = kNThreads_;
27
- // Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads improves occupancy.
28
- static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3;
29
- static constexpr int kNItems = kNItems_;
30
- static constexpr int kNRows = kNRows_;
31
- static constexpr int kNBytes = sizeof(input_t);
32
- static_assert(kNBytes == 2 || kNBytes == 4);
33
- static constexpr int kNElts = kNBytes == 4 ? 4 : std::min(8, kNItems);
34
- static_assert(kNItems % kNElts == 0);
35
- static constexpr int kNLoads = kNItems / kNElts;
36
- static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>;
37
- static constexpr bool kIsEvenLen = kIsEvenLen_;
38
- static constexpr bool kIsVariableB = kIsVariableB_;
39
- static constexpr bool kIsVariableC = kIsVariableC_;
40
- static constexpr bool kHasZ = kHasZ_;
41
-
42
- static constexpr bool kDirectIO = kIsEvenLen && kNLoads == 1;
43
-
44
- using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
45
- using scan_t = std::conditional_t<!kIsComplex, float2, float4>;
46
- using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
47
- using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads,
48
- !kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
49
- using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
50
- using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2,
51
- !kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
52
- using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
53
- using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads,
54
- !kDirectIO ? cub::BLOCK_STORE_WARP_TRANSPOSE : cub::BLOCK_STORE_DIRECT>;
55
- // using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
56
- // using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
57
- using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
58
- static constexpr int kSmemIOSize = std::max({sizeof(typename BlockLoadT::TempStorage),
59
- sizeof(typename BlockLoadVecT::TempStorage),
60
- (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
61
- (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
62
- sizeof(typename BlockStoreT::TempStorage),
63
- sizeof(typename BlockStoreVecT::TempStorage)});
64
- static constexpr int kSmemSize = kSmemIOSize + sizeof(typename BlockScanT::TempStorage);
65
- };
66
-
67
- template<typename Ktraits>
68
- __global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks)
69
- void selective_scan_fwd_kernel(SSMParamsBase params) {
70
- constexpr bool kIsComplex = Ktraits::kIsComplex;
71
- constexpr bool kIsVariableB = Ktraits::kIsVariableB;
72
- constexpr bool kIsVariableC = Ktraits::kIsVariableC;
73
- constexpr bool kHasZ = Ktraits::kHasZ;
74
- constexpr int kNThreads = Ktraits::kNThreads;
75
- constexpr int kNItems = Ktraits::kNItems;
76
- constexpr int kNRows = Ktraits::kNRows;
77
- constexpr bool kDirectIO = Ktraits::kDirectIO;
78
- using input_t = typename Ktraits::input_t;
79
- using weight_t = typename Ktraits::weight_t;
80
- using scan_t = typename Ktraits::scan_t;
81
-
82
- // Shared memory.
83
- extern __shared__ char smem_[];
84
- // cast to lvalue reference of expected type
85
- // char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
86
- // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
87
- // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
88
- auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
89
- auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
90
- auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
91
- auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
92
- auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
93
- // weight_t *smem_a = reinterpret_cast<weight_t *>(smem_ + smem_loadstorescan_size);
94
- // weight_t *smem_bc = reinterpret_cast<weight_t *>(smem_a + MAX_DSTATE);
95
- scan_t *smem_running_prefix = reinterpret_cast<scan_t *>(smem_ + Ktraits::kSmemSize);
96
-
97
- const int batch_id = blockIdx.x;
98
- const int dim_id = blockIdx.y;
99
- const int group_id = dim_id / (params.dim_ngroups_ratio);
100
- input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride
101
- + dim_id * kNRows * params.u_d_stride;
102
- input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride
103
- + dim_id * kNRows * params.delta_d_stride;
104
- weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * kNRows * params.A_d_stride;
105
- weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * kNRows * params.B_d_stride;
106
- input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride;
107
- weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * kNRows * params.C_d_stride;
108
- input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride;
109
- scan_t *x = reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id * kNRows) * params.n_chunks * params.dstate;
110
-
111
- float D_val[kNRows] = {0};
112
- if (params.D_ptr != nullptr) {
113
- #pragma unroll
114
- for (int r = 0; r < kNRows; ++r) {
115
- D_val[r] = reinterpret_cast<float *>(params.D_ptr)[dim_id * kNRows + r];
116
- }
117
- }
118
- float delta_bias[kNRows] = {0};
119
- if (params.delta_bias_ptr != nullptr) {
120
- #pragma unroll
121
- for (int r = 0; r < kNRows; ++r) {
122
- delta_bias[r] = reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id * kNRows + r];
123
- }
124
- }
125
-
126
- // for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
127
- // smem_a[state_idx] = A[state_idx * params.A_dstate_stride];
128
- // smem_bc[state_idx] = B[state_idx * params.B_dstate_stride] * C[state_idx * params.C_dstate_stride];
129
- // }
130
-
131
- constexpr int kChunkSize = kNThreads * kNItems;
132
- for (int chunk = 0; chunk < params.n_chunks; ++chunk) {
133
- input_t u_vals[kNRows][kNItems], delta_vals_load[kNRows][kNItems];
134
- __syncthreads();
135
- #pragma unroll
136
- for (int r = 0; r < kNRows; ++r) {
137
- if constexpr (!kDirectIO) {
138
- if (r > 0) { __syncthreads(); }
139
- }
140
- load_input<Ktraits>(u + r * params.u_d_stride, u_vals[r], smem_load, params.seqlen - chunk * kChunkSize);
141
- if constexpr (!kDirectIO) { __syncthreads(); }
142
- load_input<Ktraits>(delta + r * params.delta_d_stride, delta_vals_load[r], smem_load, params.seqlen - chunk * kChunkSize);
143
- }
144
- u += kChunkSize;
145
- delta += kChunkSize;
146
-
147
- float delta_vals[kNRows][kNItems], delta_u_vals[kNRows][kNItems], out_vals[kNRows][kNItems];
148
- #pragma unroll
149
- for (int r = 0; r < kNRows; ++r) {
150
- #pragma unroll
151
- for (int i = 0; i < kNItems; ++i) {
152
- float u_val = float(u_vals[r][i]);
153
- delta_vals[r][i] = float(delta_vals_load[r][i]) + delta_bias[r];
154
- if (params.delta_softplus) {
155
- delta_vals[r][i] = delta_vals[r][i] <= 20.f ? log1pf(expf(delta_vals[r][i])) : delta_vals[r][i];
156
- }
157
- delta_u_vals[r][i] = delta_vals[r][i] * u_val;
158
- out_vals[r][i] = D_val[r] * u_val;
159
- }
160
- }
161
-
162
- __syncthreads();
163
- for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
164
- weight_t A_val[kNRows];
165
- #pragma unroll
166
- for (int r = 0; r < kNRows; ++r) {
167
- A_val[r] = A[state_idx * params.A_dstate_stride + r * params.A_d_stride];
168
- // Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
169
- constexpr float kLog2e = M_LOG2E;
170
- if constexpr (!kIsComplex) {
171
- A_val[r] *= kLog2e;
172
- } else {
173
- A_val[r].real_ *= kLog2e;
174
- }
175
- }
176
- // This variable holds B * C if both B and C are constant across seqlen. If only B varies
177
- // across seqlen, this holds C. If only C varies across seqlen, this holds B.
178
- // If both B and C vary, this is unused.
179
- weight_t BC_val[kNRows];
180
- weight_t B_vals[kNItems], C_vals[kNItems];
181
- if constexpr (kIsVariableB) {
182
- load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
183
- smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
184
- if constexpr (!kIsVariableC) {
185
- #pragma unroll
186
- for (int r = 0; r < kNRows; ++r) {
187
- BC_val[r] = C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
188
- }
189
- }
190
- }
191
- if constexpr (kIsVariableC) {
192
- auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
193
- load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
194
- smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
195
- if constexpr (!kIsVariableB) {
196
- #pragma unroll
197
- for (int r = 0; r < kNRows; ++r) {
198
- BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride];
199
- }
200
- }
201
- }
202
- if constexpr (!kIsVariableB && !kIsVariableC) {
203
- #pragma unroll
204
- for (int r = 0; r < kNRows; ++r) {
205
- BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride] * C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
206
- }
207
- }
208
-
209
- #pragma unroll
210
- for (int r = 0; r < kNRows; ++r) {
211
- if (r > 0) { __syncthreads(); } // Scan could be using the same smem
212
- scan_t thread_data[kNItems];
213
- #pragma unroll
214
- for (int i = 0; i < kNItems; ++i) {
215
- if constexpr (!kIsComplex) {
216
- thread_data[i] = make_float2(exp2f(delta_vals[r][i] * A_val[r]),
217
- !kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]);
218
- if constexpr (!Ktraits::kIsEvenLen) { // So that the last state is correct
219
- if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
220
- thread_data[i] = make_float2(1.f, 0.f);
221
- }
222
- }
223
- } else {
224
- // Pytorch's implementation of complex exp (which calls thrust) is very slow
225
- complex_t delta_a_exp = cexp2f(delta_vals[r][i] * A_val[r]);
226
- weight_t B_delta_u_val = !kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i];
227
- thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_);
228
- if constexpr (!Ktraits::kIsEvenLen) { // So that the last state is correct
229
- if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
230
- thread_data[i] = make_float4(1.f, 0.f, 0.f, 0.f);
231
- }
232
- }
233
- }
234
- }
235
- // Initialize running total
236
- scan_t running_prefix;
237
- if constexpr (!kIsComplex) {
238
- // If we use WARP_SCAN then all lane 0 of all warps (not just thread 0) needs to read
239
- running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float2(1.f, 0.f);
240
- // running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float2(1.f, 0.f);
241
- } else {
242
- running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float4(1.f, 0.f, 0.f, 0.f);
243
- // running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
244
- }
245
- SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
246
- Ktraits::BlockScanT(smem_scan).InclusiveScan(
247
- thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
248
- );
249
- // There's a syncthreads in the scan op, so we don't need to sync here.
250
- // Unless there's only 1 warp, but then it's the same thread (0) reading and writing.
251
- if (threadIdx.x == 0) {
252
- smem_running_prefix[state_idx] = prefix_op.running_prefix;
253
- x[(r * params.n_chunks + chunk) * params.dstate + state_idx] = prefix_op.running_prefix;
254
- }
255
- #pragma unroll
256
- for (int i = 0; i < kNItems; ++i) {
257
- const weight_t C_val = !kIsVariableC
258
- ? BC_val[r]
259
- : (!kIsVariableB ? BC_val[r] * C_vals[i] : C_vals[i]);
260
- if constexpr (!kIsComplex) {
261
- out_vals[r][i] += thread_data[i].y * C_val;
262
- } else {
263
- out_vals[r][i] += (complex_t(thread_data[i].z, thread_data[i].w) * C_val).real_ * 2;
264
- }
265
- }
266
- }
267
- }
268
-
269
- input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
270
- + dim_id * kNRows * params.out_d_stride + chunk * kChunkSize;
271
- __syncthreads();
272
- #pragma unroll
273
- for (int r = 0; r < kNRows; ++r) {
274
- if constexpr (!kDirectIO) {
275
- if (r > 0) { __syncthreads(); }
276
- }
277
- store_output<Ktraits>(out + r * params.out_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
278
- }
279
-
280
- if constexpr (kHasZ) {
281
- input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride
282
- + dim_id * kNRows * params.z_d_stride + chunk * kChunkSize;
283
- input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride
284
- + dim_id * kNRows * params.out_z_d_stride + chunk * kChunkSize;
285
- #pragma unroll
286
- for (int r = 0; r < kNRows; ++r) {
287
- input_t z_vals[kNItems];
288
- __syncthreads();
289
- load_input<Ktraits>(z + r * params.z_d_stride, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
290
- #pragma unroll
291
- for (int i = 0; i < kNItems; ++i) {
292
- float z_val = z_vals[i];
293
- out_vals[r][i] *= z_val / (1 + expf(-z_val));
294
- }
295
- __syncthreads();
296
- store_output<Ktraits>(out_z + r * params.out_z_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
297
- }
298
- }
299
-
300
- Bvar += kChunkSize * (!kIsComplex ? 1 : 2);
301
- Cvar += kChunkSize * (!kIsComplex ? 1 : 2);
302
- }
303
- }
304
-
305
- template<int kNThreads, int kNItems, typename input_t, typename weight_t>
306
- void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
307
- // Only kNRows == 1 is tested for now, which ofc doesn't differ from previously when we had each block
308
- // processing 1 row.
309
- constexpr int kNRows = 1;
310
- BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
311
- BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
312
- BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
313
- BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
314
- using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, input_t, weight_t>;
315
- // constexpr int kSmemSize = Ktraits::kSmemSize;
316
- constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
317
- // printf("smem_size = %d\n", kSmemSize);
318
- dim3 grid(params.batch, params.dim / kNRows);
319
- auto kernel = &selective_scan_fwd_kernel<Ktraits>;
320
- if (kSmemSize >= 48 * 1024) {
321
- C10_CUDA_CHECK(cudaFuncSetAttribute(
322
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
323
- }
324
- kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
325
- C10_CUDA_KERNEL_LAUNCH_CHECK();
326
- });
327
- });
328
- });
329
- });
330
- }
331
-
332
- template<typename input_t, typename weight_t>
333
- void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream) {
334
- if (params.seqlen <= 128) {
335
- selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream);
336
- } else if (params.seqlen <= 256) {
337
- selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream);
338
- } else if (params.seqlen <= 512) {
339
- selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream);
340
- } else if (params.seqlen <= 1024) {
341
- selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
342
- } else {
343
- selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
344
- }
345
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/static_switch.h DELETED
@@ -1,25 +0,0 @@
1
- // Inspired by https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
2
- // and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
3
-
4
- #pragma once
5
-
6
- /// @param COND - a boolean expression to switch by
7
- /// @param CONST_NAME - a name given for the constexpr bool variable.
8
- /// @param ... - code to execute for true and false
9
- ///
10
- /// Usage:
11
- /// ```
12
- /// BOOL_SWITCH(flag, BoolConst, [&] {
13
- /// some_function<BoolConst>(...);
14
- /// });
15
- /// ```
16
- #define BOOL_SWITCH(COND, CONST_NAME, ...) \
17
- [&] { \
18
- if (COND) { \
19
- constexpr bool CONST_NAME = true; \
20
- return __VA_ARGS__(); \
21
- } else { \
22
- constexpr bool CONST_NAME = false; \
23
- return __VA_ARGS__(); \
24
- } \
25
- }()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/csrc/selective_scan/uninitialized_copy.cuh DELETED
@@ -1,69 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2011-2022, NVIDIA CORPORATION. All rights reserved.
3
- *
4
- * Redistribution and use in source and binary forms, with or without
5
- * modification, are permitted provided that the following conditions are met:
6
- * * Redistributions of source code must retain the above copyright
7
- * notice, this list of conditions and the following disclaimer.
8
- * * Redistributions in binary form must reproduce the above copyright
9
- * notice, this list of conditions and the following disclaimer in the
10
- * documentation and/or other materials provided with the distribution.
11
- * * Neither the name of the NVIDIA CORPORATION nor the
12
- * names of its contributors may be used to endorse or promote products
13
- * derived from this software without specific prior written permission.
14
- *
15
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
- * ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
19
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25
- *
26
- ******************************************************************************/
27
-
28
- #pragma once
29
-
30
- #include <cub/config.cuh>
31
-
32
- #include <cuda/std/type_traits>
33
-
34
-
35
- namespace detail
36
- {
37
-
38
- #if defined(_NVHPC_CUDA)
39
- template <typename T, typename U>
40
- __host__ __device__ void uninitialized_copy(T *ptr, U &&val)
41
- {
42
- // NVBug 3384810
43
- new (ptr) T(::cuda::std::forward<U>(val));
44
- }
45
- #else
46
- template <typename T,
47
- typename U,
48
- typename ::cuda::std::enable_if<
49
- ::cuda::std::is_trivially_copyable<T>::value,
50
- int
51
- >::type = 0>
52
- __host__ __device__ void uninitialized_copy(T *ptr, U &&val)
53
- {
54
- *ptr = ::cuda::std::forward<U>(val);
55
- }
56
-
57
- template <typename T,
58
- typename U,
59
- typename ::cuda::std::enable_if<
60
- !::cuda::std::is_trivially_copyable<T>::value,
61
- int
62
- >::type = 0>
63
- __host__ __device__ void uninitialized_copy(T *ptr, U &&val)
64
- {
65
- new (ptr) T(::cuda::std::forward<U>(val));
66
- }
67
- #endif
68
-
69
- } // namespace detail
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/evals/lm_harness_eval.py DELETED
@@ -1,39 +0,0 @@
1
- import torch
2
-
3
- import transformers
4
- from transformers import AutoTokenizer
5
-
6
- from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
7
-
8
- from lm_eval.api.model import LM
9
- from lm_eval.models.huggingface import HFLM
10
- from lm_eval.api.registry import register_model
11
- from lm_eval.__main__ import cli_evaluate
12
-
13
-
14
- @register_model("mamba")
15
- class MambaEvalWrapper(HFLM):
16
-
17
- AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
18
-
19
- def __init__(self, pretrained="state-spaces/mamba-2.8b", max_length=2048, batch_size=None, device="cuda",
20
- dtype=torch.float16):
21
- LM.__init__(self)
22
- self._model = MambaLMHeadModel.from_pretrained(pretrained, device=device, dtype=dtype)
23
- self.tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
24
- self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
25
- self.vocab_size = self.tokenizer.vocab_size
26
- self._batch_size = int(batch_size) if batch_size is not None else 64
27
- self._max_length = max_length
28
- self._device = torch.device(device)
29
-
30
- @property
31
- def batch_size(self):
32
- return self._batch_size
33
-
34
- def _model_generate(self, context, max_length, stop, **generation_kwargs):
35
- raise NotImplementedError()
36
-
37
-
38
- if __name__ == "__main__":
39
- cli_evaluate()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/mamba_ssm/__init__.py DELETED
@@ -1,5 +0,0 @@
1
- __version__ = "1.2.0.post1"
2
-
3
- from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, mamba_inner_fn
4
- from mamba_ssm.modules.mamba_simple import Mamba
5
- from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
 
 
 
 
 
 
mamba-main/mamba_ssm/models/__init__.py DELETED
File without changes
mamba-main/mamba_ssm/models/config_mamba.py DELETED
@@ -1,15 +0,0 @@
1
- from dataclasses import dataclass, field
2
-
3
-
4
- @dataclass
5
- class MambaConfig:
6
-
7
- d_model: int = 2560
8
- n_layer: int = 64
9
- vocab_size: int = 50277
10
- ssm_cfg: dict = field(default_factory=dict)
11
- rms_norm: bool = True
12
- residual_in_fp32: bool = True
13
- fused_add_norm: bool = True
14
- pad_vocab_size_multiple: int = 8
15
- tie_embeddings: bool = True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/mamba_ssm/models/mixer_seq_simple.py DELETED
@@ -1,265 +0,0 @@
1
- # Copyright (c) 2023, Albert Gu, Tri Dao.
2
-
3
- import math
4
- from functools import partial
5
- import json
6
- import os
7
-
8
- from collections import namedtuple
9
-
10
- import torch
11
- import torch.nn as nn
12
-
13
- from mamba_ssm.models.config_mamba import MambaConfig
14
- from mamba_ssm.modules.mamba_simple import Mamba, Block
15
- from mamba_ssm.utils.generation import GenerationMixin
16
- from mamba_ssm.utils.hf import load_config_hf, load_state_dict_hf
17
-
18
- try:
19
- from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
20
- except ImportError:
21
- RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
22
-
23
-
24
- def create_block(
25
- d_model,
26
- ssm_cfg=None,
27
- norm_epsilon=1e-5,
28
- rms_norm=False,
29
- residual_in_fp32=False,
30
- fused_add_norm=False,
31
- layer_idx=None,
32
- device=None,
33
- dtype=None,
34
- ):
35
- if ssm_cfg is None:
36
- ssm_cfg = {}
37
- factory_kwargs = {"device": device, "dtype": dtype}
38
- mixer_cls = partial(Mamba, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs)
39
- norm_cls = partial(
40
- nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs
41
- )
42
- block = Block(
43
- d_model,
44
- mixer_cls,
45
- norm_cls=norm_cls,
46
- fused_add_norm=fused_add_norm,
47
- residual_in_fp32=residual_in_fp32,
48
- )
49
- block.layer_idx = layer_idx
50
- return block
51
-
52
-
53
- # https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
54
- def _init_weights(
55
- module,
56
- n_layer,
57
- initializer_range=0.02, # Now only used for embedding layer.
58
- rescale_prenorm_residual=True,
59
- n_residuals_per_layer=1, # Change to 2 if we have MLP
60
- ):
61
- if isinstance(module, nn.Linear):
62
- if module.bias is not None:
63
- if not getattr(module.bias, "_no_reinit", False):
64
- nn.init.zeros_(module.bias)
65
- elif isinstance(module, nn.Embedding):
66
- nn.init.normal_(module.weight, std=initializer_range)
67
-
68
- if rescale_prenorm_residual:
69
- # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
70
- # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
71
- # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
72
- # > -- GPT-2 :: https://openai.com/blog/better-language-models/
73
- #
74
- # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
75
- for name, p in module.named_parameters():
76
- if name in ["out_proj.weight", "fc2.weight"]:
77
- # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
78
- # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
79
- # We need to reinit p since this code could be called multiple times
80
- # Having just p *= scale would repeatedly scale it down
81
- nn.init.kaiming_uniform_(p, a=math.sqrt(5))
82
- with torch.no_grad():
83
- p /= math.sqrt(n_residuals_per_layer * n_layer)
84
-
85
-
86
- class MixerModel(nn.Module):
87
- def __init__(
88
- self,
89
- d_model: int,
90
- n_layer: int,
91
- vocab_size: int,
92
- ssm_cfg=None,
93
- norm_epsilon: float = 1e-5,
94
- rms_norm: bool = False,
95
- initializer_cfg=None,
96
- fused_add_norm=False,
97
- residual_in_fp32=False,
98
- device=None,
99
- dtype=None,
100
- ) -> None:
101
- factory_kwargs = {"device": device, "dtype": dtype}
102
- super().__init__()
103
- self.residual_in_fp32 = residual_in_fp32
104
-
105
- self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs)
106
-
107
- # We change the order of residual and layer norm:
108
- # Instead of LN -> Attn / MLP -> Add, we do:
109
- # Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and
110
- # the main branch (output of MLP / Mixer). The model definition is unchanged.
111
- # This is for performance reason: we can fuse add + layer_norm.
112
- self.fused_add_norm = fused_add_norm
113
- if self.fused_add_norm:
114
- if layer_norm_fn is None or rms_norm_fn is None:
115
- raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels")
116
-
117
- self.layers = nn.ModuleList(
118
- [
119
- create_block(
120
- d_model,
121
- ssm_cfg=ssm_cfg,
122
- norm_epsilon=norm_epsilon,
123
- rms_norm=rms_norm,
124
- residual_in_fp32=residual_in_fp32,
125
- fused_add_norm=fused_add_norm,
126
- layer_idx=i,
127
- **factory_kwargs,
128
- )
129
- for i in range(n_layer)
130
- ]
131
- )
132
-
133
- self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)(
134
- d_model, eps=norm_epsilon, **factory_kwargs
135
- )
136
-
137
- self.apply(
138
- partial(
139
- _init_weights,
140
- n_layer=n_layer,
141
- **(initializer_cfg if initializer_cfg is not None else {}),
142
- )
143
- )
144
-
145
- def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
146
- return {
147
- i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
148
- for i, layer in enumerate(self.layers)
149
- }
150
-
151
- def forward(self, input_ids, inference_params=None):
152
- hidden_states = self.embedding(input_ids)
153
- residual = None
154
- for layer in self.layers:
155
- hidden_states, residual = layer(
156
- hidden_states, residual, inference_params=inference_params
157
- )
158
- if not self.fused_add_norm:
159
- residual = (hidden_states + residual) if residual is not None else hidden_states
160
- hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
161
- else:
162
- # Set prenorm=False here since we don't need the residual
163
- fused_add_norm_fn = rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
164
- hidden_states = fused_add_norm_fn(
165
- hidden_states,
166
- self.norm_f.weight,
167
- self.norm_f.bias,
168
- eps=self.norm_f.eps,
169
- residual=residual,
170
- prenorm=False,
171
- residual_in_fp32=self.residual_in_fp32,
172
- )
173
- return hidden_states
174
-
175
-
176
- class MambaLMHeadModel(nn.Module, GenerationMixin):
177
-
178
- def __init__(
179
- self,
180
- config: MambaConfig,
181
- initializer_cfg=None,
182
- device=None,
183
- dtype=None,
184
- ) -> None:
185
- self.config = config
186
- d_model = config.d_model
187
- n_layer = config.n_layer
188
- vocab_size = config.vocab_size
189
- ssm_cfg = config.ssm_cfg
190
- rms_norm = config.rms_norm
191
- residual_in_fp32 = config.residual_in_fp32
192
- fused_add_norm = config.fused_add_norm
193
- pad_vocab_size_multiple = config.pad_vocab_size_multiple
194
- factory_kwargs = {"device": device, "dtype": dtype}
195
-
196
- super().__init__()
197
- if vocab_size % pad_vocab_size_multiple != 0:
198
- vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple)
199
- self.backbone = MixerModel(
200
- d_model=d_model,
201
- n_layer=n_layer,
202
- vocab_size=vocab_size,
203
- ssm_cfg=ssm_cfg,
204
- rms_norm=rms_norm,
205
- initializer_cfg=initializer_cfg,
206
- fused_add_norm=fused_add_norm,
207
- residual_in_fp32=residual_in_fp32,
208
- **factory_kwargs,
209
- )
210
- self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs)
211
-
212
- # Initialize weights and apply final processing
213
- self.apply(
214
- partial(
215
- _init_weights,
216
- n_layer=n_layer,
217
- **(initializer_cfg if initializer_cfg is not None else {}),
218
- )
219
- )
220
- self.tie_weights()
221
-
222
- def tie_weights(self):
223
- if self.config.tie_embeddings:
224
- self.lm_head.weight = self.backbone.embedding.weight
225
-
226
- def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
227
- return self.backbone.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
228
-
229
- def forward(self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0):
230
- """
231
- "position_ids" is just to be compatible with Transformer generation. We don't use it.
232
- num_last_tokens: if > 0, only return the logits for the last n tokens
233
- """
234
- hidden_states = self.backbone(input_ids, inference_params=inference_params)
235
- if num_last_tokens > 0:
236
- hidden_states = hidden_states[:, -num_last_tokens:]
237
- lm_logits = self.lm_head(hidden_states)
238
- CausalLMOutput = namedtuple("CausalLMOutput", ["logits"])
239
- return CausalLMOutput(logits=lm_logits)
240
-
241
- @classmethod
242
- def from_pretrained(cls, pretrained_model_name, device=None, dtype=None, **kwargs):
243
- config_data = load_config_hf(pretrained_model_name)
244
- config = MambaConfig(**config_data)
245
- model = cls(config, device=device, dtype=dtype, **kwargs)
246
- model.load_state_dict(load_state_dict_hf(pretrained_model_name, device=device, dtype=dtype))
247
- return model
248
-
249
- def save_pretrained(self, save_directory):
250
- """
251
- Minimal implementation of save_pretrained for MambaLMHeadModel.
252
- Save the model and its configuration file to a directory.
253
- """
254
- # Ensure save_directory exists
255
- if not os.path.exists(save_directory):
256
- os.makedirs(save_directory)
257
-
258
- # Save the model's state_dict
259
- model_path = os.path.join(save_directory, 'pytorch_model.bin')
260
- torch.save(self.state_dict(), model_path)
261
-
262
- # Save the configuration of the model
263
- config_path = os.path.join(save_directory, 'config.json')
264
- with open(config_path, 'w') as f:
265
- json.dump(self.config.__dict__, f)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/mamba_ssm/modules/__init__.py DELETED
File without changes
mamba-main/mamba_ssm/modules/mamba_simple.py DELETED
@@ -1,353 +0,0 @@
1
- # Copyright (c) 2023, Tri Dao, Albert Gu.
2
-
3
- import math
4
- from typing import Optional
5
-
6
- import torch
7
- import torch.nn as nn
8
- import torch.nn.functional as F
9
- from torch import Tensor
10
-
11
- from einops import rearrange, repeat
12
-
13
- from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, mamba_inner_fn
14
-
15
- try:
16
- from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
17
- except ImportError:
18
- causal_conv1d_fn, causal_conv1d_update = None, None
19
-
20
- try:
21
- from mamba_ssm.ops.triton.selective_state_update import selective_state_update
22
- except ImportError:
23
- selective_state_update = None
24
-
25
- try:
26
- from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
27
- except ImportError:
28
- RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
29
-
30
-
31
- class Mamba(nn.Module):
32
- def __init__(
33
- self,
34
- d_model,
35
- d_state=16,
36
- d_conv=4,
37
- expand=2,
38
- dt_rank="auto",
39
- dt_min=0.001,
40
- dt_max=0.1,
41
- dt_init="random",
42
- dt_scale=1.0,
43
- dt_init_floor=1e-4,
44
- conv_bias=True,
45
- bias=False,
46
- use_fast_path=True, # Fused kernel options
47
- layer_idx=None,
48
- device=None,
49
- dtype=None,
50
- ):
51
- factory_kwargs = {"device": device, "dtype": dtype}
52
- super().__init__()
53
- self.d_model = d_model
54
- self.d_state = d_state
55
- self.d_conv = d_conv
56
- self.expand = expand
57
- self.d_inner = int(self.expand * self.d_model)
58
- self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
59
- self.use_fast_path = use_fast_path
60
- self.layer_idx = layer_idx
61
-
62
- self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
63
-
64
- self.conv1d = nn.Conv1d(
65
- in_channels=self.d_inner,
66
- out_channels=self.d_inner,
67
- bias=conv_bias,
68
- kernel_size=d_conv,
69
- groups=self.d_inner,
70
- padding=d_conv - 1,
71
- **factory_kwargs,
72
- )
73
-
74
- self.activation = "silu"
75
- self.act = nn.SiLU()
76
-
77
- self.x_proj = nn.Linear(
78
- self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
79
- )
80
- self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
81
-
82
- # Initialize special dt projection to preserve variance at initialization
83
- dt_init_std = self.dt_rank**-0.5 * dt_scale
84
- if dt_init == "constant":
85
- nn.init.constant_(self.dt_proj.weight, dt_init_std)
86
- elif dt_init == "random":
87
- nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
88
- else:
89
- raise NotImplementedError
90
-
91
- # Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
92
- dt = torch.exp(
93
- torch.rand(self.d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
94
- + math.log(dt_min)
95
- ).clamp(min=dt_init_floor)
96
- # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
97
- inv_dt = dt + torch.log(-torch.expm1(-dt))
98
- with torch.no_grad():
99
- self.dt_proj.bias.copy_(inv_dt)
100
- # Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
101
- self.dt_proj.bias._no_reinit = True
102
-
103
- # S4D real initialization
104
- A = repeat(
105
- torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
106
- "n -> d n",
107
- d=self.d_inner,
108
- ).contiguous()
109
- A_log = torch.log(A) # Keep A_log in fp32
110
- self.A_log = nn.Parameter(A_log)
111
- self.A_log._no_weight_decay = True
112
-
113
- # D "skip" parameter
114
- self.D = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32
115
- self.D._no_weight_decay = True
116
-
117
- self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
118
-
119
- def forward(self, hidden_states, inference_params=None):
120
- """
121
- hidden_states: (B, L, D)
122
- Returns: same shape as hidden_states
123
- """
124
- batch, seqlen, dim = hidden_states.shape
125
-
126
- conv_state, ssm_state = None, None
127
- if inference_params is not None:
128
- conv_state, ssm_state = self._get_states_from_cache(inference_params, batch)
129
- if inference_params.seqlen_offset > 0:
130
- # The states are updated inplace
131
- out, _, _ = self.step(hidden_states, conv_state, ssm_state)
132
- return out
133
-
134
- # We do matmul and transpose BLH -> HBL at the same time
135
- xz = rearrange(
136
- self.in_proj.weight @ rearrange(hidden_states, "b l d -> d (b l)"),
137
- "d (b l) -> b d l",
138
- l=seqlen,
139
- )
140
- if self.in_proj.bias is not None:
141
- xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1")
142
-
143
- A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
144
- # In the backward pass we write dx and dz next to each other to avoid torch.cat
145
- if self.use_fast_path and causal_conv1d_fn is not None and inference_params is None: # Doesn't support outputting the states
146
- out = mamba_inner_fn(
147
- xz,
148
- self.conv1d.weight,
149
- self.conv1d.bias,
150
- self.x_proj.weight,
151
- self.dt_proj.weight,
152
- self.out_proj.weight,
153
- self.out_proj.bias,
154
- A,
155
- None, # input-dependent B
156
- None, # input-dependent C
157
- self.D.float(),
158
- delta_bias=self.dt_proj.bias.float(),
159
- delta_softplus=True,
160
- )
161
- else:
162
- x, z = xz.chunk(2, dim=1)
163
- # Compute short convolution
164
- if conv_state is not None:
165
- # If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
166
- # Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
167
- conv_state.copy_(F.pad(x, (self.d_conv - x.shape[-1], 0))) # Update state (B D W)
168
- if causal_conv1d_fn is None:
169
- x = self.act(self.conv1d(x)[..., :seqlen])
170
- else:
171
- assert self.activation in ["silu", "swish"]
172
- x = causal_conv1d_fn(
173
- x=x,
174
- weight=rearrange(self.conv1d.weight, "d 1 w -> d w"),
175
- bias=self.conv1d.bias,
176
- activation=self.activation,
177
- )
178
-
179
- # We're careful here about the layout, to avoid extra transposes.
180
- # We want dt to have d as the slowest moving dimension
181
- # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
182
- x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d)
183
- dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
184
- dt = self.dt_proj.weight @ dt.t()
185
- dt = rearrange(dt, "d (b l) -> b d l", l=seqlen)
186
- B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
187
- C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
188
- assert self.activation in ["silu", "swish"]
189
- y = selective_scan_fn(
190
- x,
191
- dt,
192
- A,
193
- B,
194
- C,
195
- self.D.float(),
196
- z=z,
197
- delta_bias=self.dt_proj.bias.float(),
198
- delta_softplus=True,
199
- return_last_state=ssm_state is not None,
200
- )
201
- if ssm_state is not None:
202
- y, last_state = y
203
- ssm_state.copy_(last_state)
204
- y = rearrange(y, "b d l -> b l d")
205
- out = self.out_proj(y)
206
- return out
207
-
208
- def step(self, hidden_states, conv_state, ssm_state):
209
- dtype = hidden_states.dtype
210
- assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now"
211
- xz = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
212
- x, z = xz.chunk(2, dim=-1) # (B D)
213
-
214
- # Conv step
215
- if causal_conv1d_update is None:
216
- conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
217
- conv_state[:, :, -1] = x
218
- x = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D)
219
- if self.conv1d.bias is not None:
220
- x = x + self.conv1d.bias
221
- x = self.act(x).to(dtype=dtype)
222
- else:
223
- x = causal_conv1d_update(
224
- x,
225
- conv_state,
226
- rearrange(self.conv1d.weight, "d 1 w -> d w"),
227
- self.conv1d.bias,
228
- self.activation,
229
- )
230
-
231
- x_db = self.x_proj(x) # (B dt_rank+2*d_state)
232
- dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
233
- # Don't add dt_bias here
234
- dt = F.linear(dt, self.dt_proj.weight) # (B d_inner)
235
- A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
236
-
237
- # SSM step
238
- if selective_state_update is None:
239
- # Discretize A and B
240
- dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype))
241
- dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A))
242
- dB = torch.einsum("bd,bn->bdn", dt, B)
243
- ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB)
244
- y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C)
245
- y = y + self.D.to(dtype) * x
246
- y = y * self.act(z) # (B D)
247
- else:
248
- y = selective_state_update(
249
- ssm_state, x, dt, A, B, C, self.D, z=z, dt_bias=self.dt_proj.bias, dt_softplus=True
250
- )
251
-
252
- out = self.out_proj(y)
253
- return out.unsqueeze(1), conv_state, ssm_state
254
-
255
- def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
256
- device = self.out_proj.weight.device
257
- conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype
258
- conv_state = torch.zeros(
259
- batch_size, self.d_model * self.expand, self.d_conv, device=device, dtype=conv_dtype
260
- )
261
- ssm_dtype = self.dt_proj.weight.dtype if dtype is None else dtype
262
- # ssm_dtype = torch.float32
263
- ssm_state = torch.zeros(
264
- batch_size, self.d_model * self.expand, self.d_state, device=device, dtype=ssm_dtype
265
- )
266
- return conv_state, ssm_state
267
-
268
- def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
269
- assert self.layer_idx is not None
270
- if self.layer_idx not in inference_params.key_value_memory_dict:
271
- batch_shape = (batch_size,)
272
- conv_state = torch.zeros(
273
- batch_size,
274
- self.d_model * self.expand,
275
- self.d_conv,
276
- device=self.conv1d.weight.device,
277
- dtype=self.conv1d.weight.dtype,
278
- )
279
- ssm_state = torch.zeros(
280
- batch_size,
281
- self.d_model * self.expand,
282
- self.d_state,
283
- device=self.dt_proj.weight.device,
284
- dtype=self.dt_proj.weight.dtype,
285
- # dtype=torch.float32,
286
- )
287
- inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
288
- else:
289
- conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
290
- # TODO: What if batch size changes between generation, and we reuse the same states?
291
- if initialize_states:
292
- conv_state.zero_()
293
- ssm_state.zero_()
294
- return conv_state, ssm_state
295
-
296
-
297
- class Block(nn.Module):
298
- def __init__(
299
- self, dim, mixer_cls, norm_cls=nn.LayerNorm, fused_add_norm=False, residual_in_fp32=False
300
- ):
301
- """
302
- Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection"
303
-
304
- This Block has a slightly different structure compared to a regular
305
- prenorm Transformer block.
306
- The standard block is: LN -> MHA/MLP -> Add.
307
- [Ref: https://arxiv.org/abs/2002.04745]
308
- Here we have: Add -> LN -> Mixer, returning both
309
- the hidden_states (output of the mixer) and the residual.
310
- This is purely for performance reasons, as we can fuse add and LayerNorm.
311
- The residual needs to be provided (except for the very first block).
312
- """
313
- super().__init__()
314
- self.residual_in_fp32 = residual_in_fp32
315
- self.fused_add_norm = fused_add_norm
316
- self.mixer = mixer_cls(dim)
317
- self.norm = norm_cls(dim)
318
- if self.fused_add_norm:
319
- assert RMSNorm is not None, "RMSNorm import fails"
320
- assert isinstance(
321
- self.norm, (nn.LayerNorm, RMSNorm)
322
- ), "Only LayerNorm and RMSNorm are supported for fused_add_norm"
323
-
324
- def forward(
325
- self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None
326
- ):
327
- r"""Pass the input through the encoder layer.
328
-
329
- Args:
330
- hidden_states: the sequence to the encoder layer (required).
331
- residual: hidden_states = Mixer(LN(residual))
332
- """
333
- if not self.fused_add_norm:
334
- residual = (hidden_states + residual) if residual is not None else hidden_states
335
- hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
336
- if self.residual_in_fp32:
337
- residual = residual.to(torch.float32)
338
- else:
339
- fused_add_norm_fn = rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn
340
- hidden_states, residual = fused_add_norm_fn(
341
- hidden_states,
342
- self.norm.weight,
343
- self.norm.bias,
344
- residual=residual,
345
- prenorm=True,
346
- residual_in_fp32=self.residual_in_fp32,
347
- eps=self.norm.eps,
348
- )
349
- hidden_states = self.mixer(hidden_states, inference_params=inference_params)
350
- return hidden_states, residual
351
-
352
- def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
353
- return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/mamba_ssm/ops/__init__.py DELETED
File without changes
mamba-main/mamba_ssm/ops/selective_scan_interface.py DELETED
@@ -1,357 +0,0 @@
1
- # Copyright (c) 2023, Tri Dao, Albert Gu.
2
-
3
- import torch
4
- import torch.nn.functional as F
5
- from torch.cuda.amp import custom_bwd, custom_fwd
6
-
7
- from einops import rearrange, repeat
8
-
9
- try:
10
- from causal_conv1d import causal_conv1d_fn
11
- import causal_conv1d_cuda
12
- except ImportError:
13
- causal_conv1d_fn = None
14
- causal_conv1d_cuda = None
15
-
16
- import selective_scan_cuda
17
-
18
-
19
- class SelectiveScanFn(torch.autograd.Function):
20
-
21
- @staticmethod
22
- def forward(ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
23
- return_last_state=False):
24
- if u.stride(-1) != 1:
25
- u = u.contiguous()
26
- if delta.stride(-1) != 1:
27
- delta = delta.contiguous()
28
- if D is not None:
29
- D = D.contiguous()
30
- if B.stride(-1) != 1:
31
- B = B.contiguous()
32
- if C.stride(-1) != 1:
33
- C = C.contiguous()
34
- if z is not None and z.stride(-1) != 1:
35
- z = z.contiguous()
36
- if B.dim() == 3:
37
- B = rearrange(B, "b dstate l -> b 1 dstate l")
38
- ctx.squeeze_B = True
39
- if C.dim() == 3:
40
- C = rearrange(C, "b dstate l -> b 1 dstate l")
41
- ctx.squeeze_C = True
42
- out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus)
43
- ctx.delta_softplus = delta_softplus
44
- ctx.has_z = z is not None
45
- last_state = x[:, :, -1, 1::2] # (batch, dim, dstate)
46
- if not ctx.has_z:
47
- ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x)
48
- return out if not return_last_state else (out, last_state)
49
- else:
50
- ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out)
51
- out_z = rest[0]
52
- return out_z if not return_last_state else (out_z, last_state)
53
-
54
- @staticmethod
55
- def backward(ctx, dout, *args):
56
- if not ctx.has_z:
57
- u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors
58
- z = None
59
- out = None
60
- else:
61
- u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors
62
- if dout.stride(-1) != 1:
63
- dout = dout.contiguous()
64
- # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
65
- # backward of selective_scan_cuda with the backward of chunk).
66
- # Here we just pass in None and dz will be allocated in the C++ code.
67
- du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd(
68
- u, delta, A, B, C, D, z, delta_bias, dout, x, out, None, ctx.delta_softplus,
69
- False # option to recompute out_z, not used here
70
- )
71
- dz = rest[0] if ctx.has_z else None
72
- dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB
73
- dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC
74
- return (du, ddelta, dA, dB, dC,
75
- dD if D is not None else None,
76
- dz,
77
- ddelta_bias if delta_bias is not None else None,
78
- None,
79
- None)
80
-
81
-
82
- def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
83
- return_last_state=False):
84
- """if return_last_state is True, returns (out, last_state)
85
- last_state has shape (batch, dim, dstate). Note that the gradient of the last state is
86
- not considered in the backward pass.
87
- """
88
- return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
89
-
90
-
91
- def selective_scan_ref(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
92
- return_last_state=False):
93
- """
94
- u: r(B D L)
95
- delta: r(B D L)
96
- A: c(D N) or r(D N)
97
- B: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
98
- C: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
99
- D: r(D)
100
- z: r(B D L)
101
- delta_bias: r(D), fp32
102
-
103
- out: r(B D L)
104
- last_state (optional): r(B D dstate) or c(B D dstate)
105
- """
106
- dtype_in = u.dtype
107
- u = u.float()
108
- delta = delta.float()
109
- if delta_bias is not None:
110
- delta = delta + delta_bias[..., None].float()
111
- if delta_softplus:
112
- delta = F.softplus(delta)
113
- batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
114
- is_variable_B = B.dim() >= 3
115
- is_variable_C = C.dim() >= 3
116
- if A.is_complex():
117
- if is_variable_B:
118
- B = torch.view_as_complex(rearrange(B.float(), "... (L two) -> ... L two", two=2))
119
- if is_variable_C:
120
- C = torch.view_as_complex(rearrange(C.float(), "... (L two) -> ... L two", two=2))
121
- else:
122
- B = B.float()
123
- C = C.float()
124
- x = A.new_zeros((batch, dim, dstate))
125
- ys = []
126
- deltaA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
127
- if not is_variable_B:
128
- deltaB_u = torch.einsum('bdl,dn,bdl->bdln', delta, B, u)
129
- else:
130
- if B.dim() == 3:
131
- deltaB_u = torch.einsum('bdl,bnl,bdl->bdln', delta, B, u)
132
- else:
133
- B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
134
- deltaB_u = torch.einsum('bdl,bdnl,bdl->bdln', delta, B, u)
135
- if is_variable_C and C.dim() == 4:
136
- C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
137
- last_state = None
138
- for i in range(u.shape[2]):
139
- x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
140
- if not is_variable_C:
141
- y = torch.einsum('bdn,dn->bd', x, C)
142
- else:
143
- if C.dim() == 3:
144
- y = torch.einsum('bdn,bn->bd', x, C[:, :, i])
145
- else:
146
- y = torch.einsum('bdn,bdn->bd', x, C[:, :, :, i])
147
- if i == u.shape[2] - 1:
148
- last_state = x
149
- if y.is_complex():
150
- y = y.real * 2
151
- ys.append(y)
152
- y = torch.stack(ys, dim=2) # (batch dim L)
153
- out = y if D is None else y + u * rearrange(D, "d -> d 1")
154
- if z is not None:
155
- out = out * F.silu(z)
156
- out = out.to(dtype=dtype_in)
157
- return out if not return_last_state else (out, last_state)
158
-
159
-
160
- class MambaInnerFn(torch.autograd.Function):
161
-
162
- @staticmethod
163
- @custom_fwd
164
- def forward(ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
165
- out_proj_weight, out_proj_bias,
166
- A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
167
- C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1):
168
- """
169
- xz: (batch, dim, seqlen)
170
- """
171
- assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d."
172
- assert checkpoint_lvl in [0, 1]
173
- L = xz.shape[-1]
174
- delta_rank = delta_proj_weight.shape[1]
175
- d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
176
- if torch.is_autocast_enabled():
177
- x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
178
- delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
179
- out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
180
- out_proj_bias = (out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype())
181
- if out_proj_bias is not None else None)
182
- if xz.stride(-1) != 1:
183
- xz = xz.contiguous()
184
- conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w")
185
- x, z = xz.chunk(2, dim=1)
186
- conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None
187
- conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(
188
- x, conv1d_weight, conv1d_bias, None, None, None, True
189
- )
190
- # We're being very careful here about the layout, to avoid extra transposes.
191
- # We want delta to have d as the slowest moving dimension
192
- # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
193
- x_dbl = F.linear(rearrange(conv1d_out, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
194
- delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l = L)
195
- ctx.is_variable_B = B is None
196
- ctx.is_variable_C = C is None
197
- ctx.B_proj_bias_is_None = B_proj_bias is None
198
- ctx.C_proj_bias_is_None = C_proj_bias is None
199
- if B is None: # variable B
200
- B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl dstate)
201
- if B_proj_bias is not None:
202
- B = B + B_proj_bias.to(dtype=B.dtype)
203
- if not A.is_complex():
204
- # B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
205
- B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
206
- else:
207
- B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
208
- else:
209
- if B.stride(-1) != 1:
210
- B = B.contiguous()
211
- if C is None: # variable C
212
- C = x_dbl[:, -d_state:] # (bl dstate)
213
- if C_proj_bias is not None:
214
- C = C + C_proj_bias.to(dtype=C.dtype)
215
- if not A.is_complex():
216
- # C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
217
- C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
218
- else:
219
- C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
220
- else:
221
- if C.stride(-1) != 1:
222
- C = C.contiguous()
223
- if D is not None:
224
- D = D.contiguous()
225
- out, scan_intermediates, out_z = selective_scan_cuda.fwd(
226
- conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus
227
- )
228
- ctx.delta_softplus = delta_softplus
229
- ctx.out_proj_bias_is_None = out_proj_bias is None
230
- ctx.checkpoint_lvl = checkpoint_lvl
231
- if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass
232
- conv1d_out, delta = None, None
233
- ctx.save_for_backward(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight,
234
- delta_proj_weight, out_proj_weight, conv1d_out, delta,
235
- A, B, C, D, delta_bias, scan_intermediates, out)
236
- return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
237
-
238
- @staticmethod
239
- @custom_bwd
240
- def backward(ctx, dout):
241
- # dout: (batch, seqlen, dim)
242
- assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d."
243
- (xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight,
244
- conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, out) = ctx.saved_tensors
245
- L = xz.shape[-1]
246
- delta_rank = delta_proj_weight.shape[1]
247
- d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
248
- x, z = xz.chunk(2, dim=1)
249
- if dout.stride(-1) != 1:
250
- dout = dout.contiguous()
251
- if ctx.checkpoint_lvl == 1:
252
- conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(
253
- x, conv1d_weight, conv1d_bias, None, None, None, True
254
- )
255
- delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(),
256
- "d (b l) -> b d l", l = L)
257
- # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
258
- # backward of selective_scan_cuda with the backward of chunk).
259
- dxz = torch.empty_like(xz) # (batch, dim, seqlen)
260
- dx, dz = dxz.chunk(2, dim=1)
261
- dout = rearrange(dout, "b l e -> e (b l)")
262
- dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L)
263
- dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd(
264
- conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates, out, dz,
265
- ctx.delta_softplus,
266
- True # option to recompute out_z
267
- )
268
- dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)"))
269
- dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None
270
- dD = dD if D is not None else None
271
- dx_dbl = torch.empty_like(x_dbl)
272
- dB_proj_bias = None
273
- if ctx.is_variable_B:
274
- if not A.is_complex():
275
- dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous()
276
- else:
277
- dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
278
- dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None
279
- dx_dbl[:, delta_rank:delta_rank + d_state] = dB # (bl d)
280
- dB = None
281
- dC_proj_bias = None
282
- if ctx.is_variable_C:
283
- if not A.is_complex():
284
- dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous()
285
- else:
286
- dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
287
- dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None
288
- dx_dbl[:, -d_state:] = dC # (bl d)
289
- dC = None
290
- ddelta = rearrange(ddelta, "b d l -> d (b l)")
291
- ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank])
292
- dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight)
293
- dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)")
294
- dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d"))
295
- dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out)
296
- dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1])
297
- # The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
298
- # backward of conv1d with the backward of chunk).
299
- dx, dconv1d_weight, dconv1d_bias, *_ = causal_conv1d_cuda.causal_conv1d_bwd(
300
- x, conv1d_weight, conv1d_bias, dconv1d_out, None, None, None, dx, False, True
301
- )
302
- dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
303
- dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w")
304
- return (dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight,
305
- dout_proj_weight, dout_proj_bias,
306
- dA, dB, dC, dD,
307
- ddelta_bias if delta_bias is not None else None,
308
- dB_proj_bias, dC_proj_bias, None)
309
-
310
-
311
- def mamba_inner_fn(
312
- xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
313
- out_proj_weight, out_proj_bias,
314
- A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
315
- C_proj_bias=None, delta_softplus=True
316
- ):
317
- return MambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
318
- out_proj_weight, out_proj_bias,
319
- A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)
320
-
321
-
322
- def mamba_inner_ref(
323
- xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
324
- out_proj_weight, out_proj_bias,
325
- A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
326
- C_proj_bias=None, delta_softplus=True
327
- ):
328
- assert causal_conv1d_fn is not None, "causal_conv1d_fn is not available. Please install causal-conv1d."
329
- L = xz.shape[-1]
330
- delta_rank = delta_proj_weight.shape[1]
331
- d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
332
- x, z = xz.chunk(2, dim=1)
333
- x = causal_conv1d_fn(x, rearrange(conv1d_weight, "d 1 w -> d w"), conv1d_bias, activation="silu")
334
- # We're being very careful here about the layout, to avoid extra transposes.
335
- # We want delta to have d as the slowest moving dimension
336
- # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
337
- x_dbl = F.linear(rearrange(x, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
338
- delta = delta_proj_weight @ x_dbl[:, :delta_rank].t()
339
- delta = rearrange(delta, "d (b l) -> b d l", l=L)
340
- if B is None: # variable B
341
- B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl d)
342
- if B_proj_bias is not None:
343
- B = B + B_proj_bias.to(dtype=B.dtype)
344
- if not A.is_complex():
345
- B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
346
- else:
347
- B = rearrange(B, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2).contiguous()
348
- if C is None: # variable B
349
- C = x_dbl[:, -d_state:] # (bl d)
350
- if C_proj_bias is not None:
351
- C = C + C_proj_bias.to(dtype=C.dtype)
352
- if not A.is_complex():
353
- C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
354
- else:
355
- C = rearrange(C, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2).contiguous()
356
- y = selective_scan_fn(x, delta, A, B, C, D, z=z, delta_bias=delta_bias, delta_softplus=True)
357
- return F.linear(rearrange(y, "b d l -> b l d"), out_proj_weight, out_proj_bias)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/mamba_ssm/ops/triton/__init__.py DELETED
File without changes
mamba-main/mamba_ssm/ops/triton/layernorm.py DELETED
@@ -1,635 +0,0 @@
1
- # Copyright (c) 2023, Tri Dao.
2
- # Implement residual + layer_norm / rms_norm.
3
-
4
- # Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
5
- # For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
6
- # This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
7
- # The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
8
-
9
- import math
10
-
11
- import torch
12
- import torch.nn.functional as F
13
- from torch.cuda.amp import custom_fwd, custom_bwd
14
-
15
- import triton
16
- import triton.language as tl
17
-
18
-
19
- def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
20
- dtype = x.dtype
21
- if upcast:
22
- weight = weight.float()
23
- bias = bias.float() if bias is not None else None
24
- if upcast:
25
- x = x.float()
26
- residual = residual.float() if residual is not None else residual
27
- if residual is not None:
28
- x = (x + residual).to(x.dtype)
29
- out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(
30
- dtype
31
- )
32
- return out if not prenorm else (out, x)
33
-
34
-
35
- def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
36
- dtype = x.dtype
37
- if upcast:
38
- weight = weight.float()
39
- bias = bias.float() if bias is not None else None
40
- if upcast:
41
- x = x.float()
42
- residual = residual.float() if residual is not None else residual
43
- if residual is not None:
44
- x = (x + residual).to(x.dtype)
45
- rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
46
- out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight)
47
- out = out.to(dtype)
48
- return out if not prenorm else (out, x)
49
-
50
-
51
- @triton.autotune(
52
- configs=[
53
- triton.Config({}, num_warps=1),
54
- triton.Config({}, num_warps=2),
55
- triton.Config({}, num_warps=4),
56
- triton.Config({}, num_warps=8),
57
- triton.Config({}, num_warps=16),
58
- triton.Config({}, num_warps=32),
59
- ],
60
- key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
61
- )
62
- # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
63
- # @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
64
- @triton.jit
65
- def _layer_norm_fwd_1pass_kernel(
66
- X, # pointer to the input
67
- Y, # pointer to the output
68
- W, # pointer to the weights
69
- B, # pointer to the biases
70
- RESIDUAL, # pointer to the residual
71
- RESIDUAL_OUT, # pointer to the residual
72
- Mean, # pointer to the mean
73
- Rstd, # pointer to the 1/std
74
- stride_x_row, # how much to increase the pointer when moving by 1 row
75
- stride_y_row,
76
- stride_res_row,
77
- stride_res_out_row,
78
- N, # number of columns in X
79
- eps, # epsilon to avoid division by zero
80
- IS_RMS_NORM: tl.constexpr,
81
- BLOCK_N: tl.constexpr,
82
- HAS_RESIDUAL: tl.constexpr,
83
- STORE_RESIDUAL_OUT: tl.constexpr,
84
- HAS_BIAS: tl.constexpr,
85
- ):
86
- # Map the program id to the row of X and Y it should compute.
87
- row = tl.program_id(0)
88
- X += row * stride_x_row
89
- Y += row * stride_y_row
90
- if HAS_RESIDUAL:
91
- RESIDUAL += row * stride_res_row
92
- if STORE_RESIDUAL_OUT:
93
- RESIDUAL_OUT += row * stride_res_out_row
94
- # Compute mean and variance
95
- cols = tl.arange(0, BLOCK_N)
96
- x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
97
- if HAS_RESIDUAL:
98
- residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
99
- x += residual
100
- if STORE_RESIDUAL_OUT:
101
- tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
102
- if not IS_RMS_NORM:
103
- mean = tl.sum(x, axis=0) / N
104
- tl.store(Mean + row, mean)
105
- xbar = tl.where(cols < N, x - mean, 0.0)
106
- var = tl.sum(xbar * xbar, axis=0) / N
107
- else:
108
- xbar = tl.where(cols < N, x, 0.0)
109
- var = tl.sum(xbar * xbar, axis=0) / N
110
- rstd = 1 / tl.sqrt(var + eps)
111
- tl.store(Rstd + row, rstd)
112
- # Normalize and apply linear transformation
113
- mask = cols < N
114
- w = tl.load(W + cols, mask=mask).to(tl.float32)
115
- if HAS_BIAS:
116
- b = tl.load(B + cols, mask=mask).to(tl.float32)
117
- x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
118
- y = x_hat * w + b if HAS_BIAS else x_hat * w
119
- # Write output
120
- tl.store(Y + cols, y, mask=mask)
121
-
122
-
123
- def _layer_norm_fwd(
124
- x, weight, bias, eps, residual=None, out_dtype=None, residual_dtype=None, is_rms_norm=False
125
- ):
126
- if residual is not None:
127
- residual_dtype = residual.dtype
128
- M, N = x.shape
129
- assert x.stride(-1) == 1
130
- if residual is not None:
131
- assert residual.stride(-1) == 1
132
- assert residual.shape == (M, N)
133
- assert weight.shape == (N,)
134
- assert weight.stride(-1) == 1
135
- if bias is not None:
136
- assert bias.stride(-1) == 1
137
- assert bias.shape == (N,)
138
- # allocate output
139
- y = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
140
- assert y.stride(-1) == 1
141
- if residual is not None or (residual_dtype is not None and residual_dtype != x.dtype):
142
- residual_out = torch.empty(M, N, device=x.device, dtype=residual_dtype)
143
- assert residual_out.stride(-1) == 1
144
- else:
145
- residual_out = None
146
- mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None
147
- rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
148
- # Less than 64KB per feature: enqueue fused kernel
149
- MAX_FUSED_SIZE = 65536 // x.element_size()
150
- BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
151
- if N > BLOCK_N:
152
- raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
153
- # heuristics for number of warps
154
- with torch.cuda.device(x.device.index):
155
- _layer_norm_fwd_1pass_kernel[(M,)](
156
- x,
157
- y,
158
- weight,
159
- bias,
160
- residual,
161
- residual_out,
162
- mean,
163
- rstd,
164
- x.stride(0),
165
- y.stride(0),
166
- residual.stride(0) if residual is not None else 0,
167
- residual_out.stride(0) if residual_out is not None else 0,
168
- N,
169
- eps,
170
- is_rms_norm,
171
- BLOCK_N,
172
- residual is not None,
173
- residual_out is not None,
174
- bias is not None,
175
- )
176
- # residual_out is None if residual is None and residual_dtype == input_dtype
177
- return y, mean, rstd, residual_out if residual_out is not None else x
178
-
179
-
180
- @triton.autotune(
181
- configs=[
182
- triton.Config({}, num_warps=1),
183
- triton.Config({}, num_warps=2),
184
- triton.Config({}, num_warps=4),
185
- triton.Config({}, num_warps=8),
186
- triton.Config({}, num_warps=16),
187
- triton.Config({}, num_warps=32),
188
- ],
189
- key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS"],
190
- )
191
- # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
192
- # @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
193
- # @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
194
- @triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
195
- @triton.jit
196
- def _layer_norm_bwd_kernel(
197
- X, # pointer to the input
198
- W, # pointer to the weights
199
- B, # pointer to the biases
200
- Y, # pointer to the output to be recomputed
201
- DY, # pointer to the output gradient
202
- DX, # pointer to the input gradient
203
- DW, # pointer to the partial sum of weights gradient
204
- DB, # pointer to the partial sum of biases gradient
205
- DRESIDUAL,
206
- DRESIDUAL_IN,
207
- Mean, # pointer to the mean
208
- Rstd, # pointer to the 1/std
209
- stride_x_row, # how much to increase the pointer when moving by 1 row
210
- stride_y_row,
211
- stride_dy_row,
212
- stride_dx_row,
213
- stride_dres_row,
214
- stride_dres_in_row,
215
- M, # number of rows in X
216
- N, # number of columns in X
217
- eps, # epsilon to avoid division by zero
218
- rows_per_program,
219
- IS_RMS_NORM: tl.constexpr,
220
- BLOCK_N: tl.constexpr,
221
- HAS_DRESIDUAL: tl.constexpr,
222
- STORE_DRESIDUAL: tl.constexpr,
223
- HAS_BIAS: tl.constexpr,
224
- RECOMPUTE_OUTPUT: tl.constexpr,
225
- ):
226
- # Map the program id to the elements of X, DX, and DY it should compute.
227
- row_block_id = tl.program_id(0)
228
- row_start = row_block_id * rows_per_program
229
- cols = tl.arange(0, BLOCK_N)
230
- mask = cols < N
231
- X += row_start * stride_x_row
232
- if HAS_DRESIDUAL:
233
- DRESIDUAL += row_start * stride_dres_row
234
- if STORE_DRESIDUAL:
235
- DRESIDUAL_IN += row_start * stride_dres_in_row
236
- DY += row_start * stride_dy_row
237
- DX += row_start * stride_dx_row
238
- if RECOMPUTE_OUTPUT:
239
- Y += row_start * stride_y_row
240
- w = tl.load(W + cols, mask=mask).to(tl.float32)
241
- if RECOMPUTE_OUTPUT and HAS_BIAS:
242
- b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
243
- dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
244
- if HAS_BIAS:
245
- db = tl.zeros((BLOCK_N,), dtype=tl.float32)
246
- row_end = min((row_block_id + 1) * rows_per_program, M)
247
- for row in range(row_start, row_end):
248
- # Load data to SRAM
249
- x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
250
- dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
251
- if not IS_RMS_NORM:
252
- mean = tl.load(Mean + row)
253
- rstd = tl.load(Rstd + row)
254
- # Compute dx
255
- xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
256
- xhat = tl.where(mask, xhat, 0.0)
257
- if RECOMPUTE_OUTPUT:
258
- y = xhat * w + b if HAS_BIAS else xhat * w
259
- tl.store(Y + cols, y, mask=mask)
260
- wdy = w * dy
261
- dw += dy * xhat
262
- if HAS_BIAS:
263
- db += dy
264
- if not IS_RMS_NORM:
265
- c1 = tl.sum(xhat * wdy, axis=0) / N
266
- c2 = tl.sum(wdy, axis=0) / N
267
- dx = (wdy - (xhat * c1 + c2)) * rstd
268
- else:
269
- c1 = tl.sum(xhat * wdy, axis=0) / N
270
- dx = (wdy - xhat * c1) * rstd
271
- if HAS_DRESIDUAL:
272
- dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
273
- dx += dres
274
- # Write dx
275
- if STORE_DRESIDUAL:
276
- tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
277
- tl.store(DX + cols, dx, mask=mask)
278
-
279
- X += stride_x_row
280
- if HAS_DRESIDUAL:
281
- DRESIDUAL += stride_dres_row
282
- if STORE_DRESIDUAL:
283
- DRESIDUAL_IN += stride_dres_in_row
284
- if RECOMPUTE_OUTPUT:
285
- Y += stride_y_row
286
- DY += stride_dy_row
287
- DX += stride_dx_row
288
- tl.store(DW + row_block_id * N + cols, dw, mask=mask)
289
- if HAS_BIAS:
290
- tl.store(DB + row_block_id * N + cols, db, mask=mask)
291
-
292
-
293
- def _layer_norm_bwd(
294
- dy,
295
- x,
296
- weight,
297
- bias,
298
- eps,
299
- mean,
300
- rstd,
301
- dresidual=None,
302
- has_residual=False,
303
- is_rms_norm=False,
304
- x_dtype=None,
305
- recompute_output=False,
306
- ):
307
- M, N = x.shape
308
- assert x.stride(-1) == 1
309
- assert dy.stride(-1) == 1
310
- assert dy.shape == (M, N)
311
- if dresidual is not None:
312
- assert dresidual.stride(-1) == 1
313
- assert dresidual.shape == (M, N)
314
- assert weight.shape == (N,)
315
- assert weight.stride(-1) == 1
316
- if bias is not None:
317
- assert bias.stride(-1) == 1
318
- assert bias.shape == (N,)
319
- # allocate output
320
- dx = (
321
- torch.empty_like(x)
322
- if x_dtype is None
323
- else torch.empty(M, N, dtype=x_dtype, device=x.device)
324
- )
325
- dresidual_in = torch.empty_like(x) if has_residual and dx.dtype != x.dtype else None
326
- y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
327
-
328
- # Less than 64KB per feature: enqueue fused kernel
329
- MAX_FUSED_SIZE = 65536 // x.element_size()
330
- BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
331
- if N > BLOCK_N:
332
- raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
333
- sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
334
- _dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
335
- _db = (
336
- torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
337
- if bias is not None
338
- else None
339
- )
340
- rows_per_program = math.ceil(M / sm_count)
341
- grid = (sm_count,)
342
- with torch.cuda.device(x.device.index):
343
- _layer_norm_bwd_kernel[grid](
344
- x,
345
- weight,
346
- bias,
347
- y,
348
- dy,
349
- dx,
350
- _dw,
351
- _db,
352
- dresidual,
353
- dresidual_in,
354
- mean,
355
- rstd,
356
- x.stride(0),
357
- 0 if not recompute_output else y.stride(0),
358
- dy.stride(0),
359
- dx.stride(0),
360
- dresidual.stride(0) if dresidual is not None else 0,
361
- dresidual_in.stride(0) if dresidual_in is not None else 0,
362
- M,
363
- N,
364
- eps,
365
- rows_per_program,
366
- is_rms_norm,
367
- BLOCK_N,
368
- dresidual is not None,
369
- dresidual_in is not None,
370
- bias is not None,
371
- )
372
- dw = _dw.sum(0).to(weight.dtype)
373
- db = _db.sum(0).to(bias.dtype) if bias is not None else None
374
- # Don't need to compute dresidual_in separately in this case
375
- if has_residual and dx.dtype == x.dtype:
376
- dresidual_in = dx
377
- return (dx, dw, db, dresidual_in) if not recompute_output else (dx, dw, db, dresidual_in, y)
378
-
379
-
380
- class LayerNormFn(torch.autograd.Function):
381
- @staticmethod
382
- def forward(
383
- ctx,
384
- x,
385
- weight,
386
- bias,
387
- residual=None,
388
- eps=1e-6,
389
- prenorm=False,
390
- residual_in_fp32=False,
391
- is_rms_norm=False,
392
- ):
393
- x_shape_og = x.shape
394
- # reshape input data into 2D tensor
395
- x = x.reshape(-1, x.shape[-1])
396
- if x.stride(-1) != 1:
397
- x = x.contiguous()
398
- if residual is not None:
399
- assert residual.shape == x_shape_og
400
- residual = residual.reshape(-1, residual.shape[-1])
401
- if residual.stride(-1) != 1:
402
- residual = residual.contiguous()
403
- weight = weight.contiguous()
404
- if bias is not None:
405
- bias = bias.contiguous()
406
- residual_dtype = (
407
- residual.dtype
408
- if residual is not None
409
- else (torch.float32 if residual_in_fp32 else None)
410
- )
411
- y, mean, rstd, residual_out = _layer_norm_fwd(
412
- x, weight, bias, eps, residual, residual_dtype=residual_dtype, is_rms_norm=is_rms_norm
413
- )
414
- ctx.save_for_backward(residual_out, weight, bias, mean, rstd)
415
- ctx.x_shape_og = x_shape_og
416
- ctx.eps = eps
417
- ctx.is_rms_norm = is_rms_norm
418
- ctx.has_residual = residual is not None
419
- ctx.prenorm = prenorm
420
- ctx.x_dtype = x.dtype
421
- y = y.reshape(x_shape_og)
422
- return y if not prenorm else (y, residual_out.reshape(x_shape_og))
423
-
424
- @staticmethod
425
- def backward(ctx, dy, *args):
426
- x, weight, bias, mean, rstd = ctx.saved_tensors
427
- dy = dy.reshape(-1, dy.shape[-1])
428
- if dy.stride(-1) != 1:
429
- dy = dy.contiguous()
430
- assert dy.shape == x.shape
431
- if ctx.prenorm:
432
- dresidual = args[0]
433
- dresidual = dresidual.reshape(-1, dresidual.shape[-1])
434
- if dresidual.stride(-1) != 1:
435
- dresidual = dresidual.contiguous()
436
- assert dresidual.shape == x.shape
437
- else:
438
- dresidual = None
439
- dx, dw, db, dresidual_in = _layer_norm_bwd(
440
- dy,
441
- x,
442
- weight,
443
- bias,
444
- ctx.eps,
445
- mean,
446
- rstd,
447
- dresidual,
448
- ctx.has_residual,
449
- ctx.is_rms_norm,
450
- x_dtype=ctx.x_dtype,
451
- )
452
- return (
453
- dx.reshape(ctx.x_shape_og),
454
- dw,
455
- db,
456
- dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
457
- None,
458
- None,
459
- None,
460
- None,
461
- )
462
-
463
-
464
- def layer_norm_fn(
465
- x,
466
- weight,
467
- bias,
468
- residual=None,
469
- eps=1e-6,
470
- prenorm=False,
471
- residual_in_fp32=False,
472
- is_rms_norm=False,
473
- ):
474
- return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, is_rms_norm)
475
-
476
-
477
- def rms_norm_fn(x, weight, bias, residual=None, prenorm=False, residual_in_fp32=False, eps=1e-6):
478
- return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, True)
479
-
480
-
481
- class RMSNorm(torch.nn.Module):
482
- def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
483
- factory_kwargs = {"device": device, "dtype": dtype}
484
- super().__init__()
485
- self.eps = eps
486
- self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
487
- self.register_parameter("bias", None)
488
- self.reset_parameters()
489
-
490
- def reset_parameters(self):
491
- torch.nn.init.ones_(self.weight)
492
-
493
- def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
494
- return rms_norm_fn(
495
- x,
496
- self.weight,
497
- self.bias,
498
- residual=residual,
499
- eps=self.eps,
500
- prenorm=prenorm,
501
- residual_in_fp32=residual_in_fp32,
502
- )
503
-
504
-
505
- class LayerNormLinearFn(torch.autograd.Function):
506
- @staticmethod
507
- @custom_fwd
508
- def forward(
509
- ctx,
510
- x,
511
- norm_weight,
512
- norm_bias,
513
- linear_weight,
514
- linear_bias,
515
- residual=None,
516
- eps=1e-6,
517
- prenorm=False,
518
- residual_in_fp32=False,
519
- is_rms_norm=False,
520
- ):
521
- x_shape_og = x.shape
522
- # reshape input data into 2D tensor
523
- x = x.reshape(-1, x.shape[-1])
524
- if x.stride(-1) != 1:
525
- x = x.contiguous()
526
- if residual is not None:
527
- assert residual.shape == x_shape_og
528
- residual = residual.reshape(-1, residual.shape[-1])
529
- if residual.stride(-1) != 1:
530
- residual = residual.contiguous()
531
- norm_weight = norm_weight.contiguous()
532
- if norm_bias is not None:
533
- norm_bias = norm_bias.contiguous()
534
- residual_dtype = (
535
- residual.dtype
536
- if residual is not None
537
- else (torch.float32 if residual_in_fp32 else None)
538
- )
539
- y, mean, rstd, residual_out = _layer_norm_fwd(
540
- x,
541
- norm_weight,
542
- norm_bias,
543
- eps,
544
- residual,
545
- out_dtype=None if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype(),
546
- residual_dtype=residual_dtype,
547
- is_rms_norm=is_rms_norm,
548
- )
549
- y = y.reshape(x_shape_og)
550
- dtype = torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype
551
- linear_weight = linear_weight.to(dtype)
552
- linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
553
- out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
554
- # We don't store y, will be recomputed in the backward pass to save memory
555
- ctx.save_for_backward(residual_out, norm_weight, norm_bias, linear_weight, mean, rstd)
556
- ctx.x_shape_og = x_shape_og
557
- ctx.eps = eps
558
- ctx.is_rms_norm = is_rms_norm
559
- ctx.has_residual = residual is not None
560
- ctx.prenorm = prenorm
561
- ctx.x_dtype = x.dtype
562
- ctx.linear_bias_is_none = linear_bias is None
563
- return out if not prenorm else (out, residual_out.reshape(x_shape_og))
564
-
565
- @staticmethod
566
- @custom_bwd
567
- def backward(ctx, dout, *args):
568
- x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
569
- dout = dout.reshape(-1, dout.shape[-1])
570
- dy = F.linear(dout, linear_weight.t())
571
- dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
572
- if dy.stride(-1) != 1:
573
- dy = dy.contiguous()
574
- assert dy.shape == x.shape
575
- if ctx.prenorm:
576
- dresidual = args[0]
577
- dresidual = dresidual.reshape(-1, dresidual.shape[-1])
578
- if dresidual.stride(-1) != 1:
579
- dresidual = dresidual.contiguous()
580
- assert dresidual.shape == x.shape
581
- else:
582
- dresidual = None
583
- dx, dnorm_weight, dnorm_bias, dresidual_in, y = _layer_norm_bwd(
584
- dy,
585
- x,
586
- norm_weight,
587
- norm_bias,
588
- ctx.eps,
589
- mean,
590
- rstd,
591
- dresidual,
592
- ctx.has_residual,
593
- ctx.is_rms_norm,
594
- x_dtype=ctx.x_dtype,
595
- recompute_output=True,
596
- )
597
- dlinear_weight = torch.einsum("bo,bi->oi", dout, y)
598
- return (
599
- dx.reshape(ctx.x_shape_og),
600
- dnorm_weight,
601
- dnorm_bias,
602
- dlinear_weight,
603
- dlinear_bias,
604
- dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
605
- None,
606
- None,
607
- None,
608
- None,
609
- )
610
-
611
-
612
- def layer_norm_linear_fn(
613
- x,
614
- norm_weight,
615
- norm_bias,
616
- linear_weight,
617
- linear_bias,
618
- residual=None,
619
- eps=1e-6,
620
- prenorm=False,
621
- residual_in_fp32=False,
622
- is_rms_norm=False,
623
- ):
624
- return LayerNormLinearFn.apply(
625
- x,
626
- norm_weight,
627
- norm_bias,
628
- linear_weight,
629
- linear_bias,
630
- residual,
631
- eps,
632
- prenorm,
633
- residual_in_fp32,
634
- is_rms_norm,
635
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/mamba_ssm/ops/triton/selective_state_update.py DELETED
@@ -1,192 +0,0 @@
1
- # Copyright (c) 2023, Tri Dao.
2
-
3
- """We want triton==2.1.0 for this
4
- """
5
-
6
- import math
7
- import torch
8
- import torch.nn.functional as F
9
-
10
- import triton
11
- import triton.language as tl
12
-
13
- from einops import rearrange, repeat
14
-
15
-
16
- @triton.heuristics({"HAS_DT_BIAS": lambda args: args["dt_bias_ptr"] is not None})
17
- @triton.heuristics({"HAS_D": lambda args: args["D_ptr"] is not None})
18
- @triton.heuristics({"HAS_Z": lambda args: args["z_ptr"] is not None})
19
- @triton.heuristics({"BLOCK_SIZE_DSTATE": lambda args: triton.next_power_of_2(args["dstate"])})
20
- @triton.jit
21
- def _selective_scan_update_kernel(
22
- # Pointers to matrices
23
- state_ptr, x_ptr, dt_ptr, dt_bias_ptr, A_ptr, B_ptr, C_ptr, D_ptr, z_ptr, out_ptr,
24
- # Matrix dimensions
25
- batch, dim, dstate,
26
- # Strides
27
- stride_state_batch, stride_state_dim, stride_state_dstate,
28
- stride_x_batch, stride_x_dim,
29
- stride_dt_batch, stride_dt_dim,
30
- stride_dt_bias_dim,
31
- stride_A_dim, stride_A_dstate,
32
- stride_B_batch, stride_B_dstate,
33
- stride_C_batch, stride_C_dstate,
34
- stride_D_dim,
35
- stride_z_batch, stride_z_dim,
36
- stride_out_batch, stride_out_dim,
37
- # Meta-parameters
38
- DT_SOFTPLUS: tl.constexpr,
39
- BLOCK_SIZE_M: tl.constexpr,
40
- HAS_DT_BIAS: tl.constexpr,
41
- HAS_D: tl.constexpr,
42
- HAS_Z: tl.constexpr,
43
- BLOCK_SIZE_DSTATE: tl.constexpr,
44
- ):
45
- pid_m = tl.program_id(axis=0)
46
- pid_b = tl.program_id(axis=1)
47
- state_ptr += pid_b * stride_state_batch
48
- x_ptr += pid_b * stride_x_batch
49
- dt_ptr += pid_b * stride_dt_batch
50
- B_ptr += pid_b * stride_B_batch
51
- C_ptr += pid_b * stride_C_batch
52
- if HAS_Z:
53
- z_ptr += pid_b * stride_z_batch
54
- out_ptr += pid_b * stride_out_batch
55
-
56
- offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
57
- offs_n = tl.arange(0, BLOCK_SIZE_DSTATE)
58
- state_ptrs = state_ptr + (offs_m[:, None] * stride_state_dim + offs_n[None, :] * stride_state_dstate)
59
- x_ptrs = x_ptr + offs_m * stride_x_dim
60
- dt_ptrs = dt_ptr + offs_m * stride_dt_dim
61
- if HAS_DT_BIAS:
62
- dt_bias_ptrs = dt_bias_ptr + offs_m * stride_dt_bias_dim
63
- A_ptrs = A_ptr + (offs_m[:, None] * stride_A_dim + offs_n[None, :] * stride_A_dstate)
64
- B_ptrs = B_ptr + offs_n * stride_B_dstate
65
- C_ptrs = C_ptr + offs_n * stride_C_dstate
66
- if HAS_D:
67
- D_ptrs = D_ptr + offs_m * stride_D_dim
68
- if HAS_Z:
69
- z_ptrs = z_ptr + offs_m * stride_z_dim
70
- out_ptrs = out_ptr + offs_m * stride_out_dim
71
-
72
- state = tl.load(state_ptrs, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate), other=0.0)
73
- x = tl.load(x_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
74
- dt = tl.load(dt_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
75
- if HAS_DT_BIAS:
76
- dt += tl.load(dt_bias_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
77
- if DT_SOFTPLUS:
78
- dt = tl.where(dt <= 20.0, tl.math.log1p(tl.exp(dt)), dt)
79
- A = tl.load(A_ptrs, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate), other=0.0).to(tl.float32)
80
- dA = tl.exp(A * dt[:, None])
81
- B = tl.load(B_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
82
- C = tl.load(C_ptrs, mask=offs_n < dstate, other=0.0).to(tl.float32)
83
- if HAS_D:
84
- D = tl.load(D_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
85
- if HAS_Z:
86
- z = tl.load(z_ptrs, mask=offs_m < dim, other=0.0).to(tl.float32)
87
-
88
- dB = B[None, :] * dt[:, None]
89
- state = state * dA + dB * x[:, None]
90
- tl.store(state_ptrs, state, mask=(offs_m[:, None] < dim) & (offs_n[None, :] < dstate))
91
- out = tl.sum(state * C[None, :], axis=1)
92
- if HAS_D:
93
- out += x * D
94
- if HAS_Z:
95
- out *= z * tl.sigmoid(z)
96
- tl.store(out_ptrs, out, mask=offs_m < dim)
97
-
98
-
99
- def selective_state_update(state, x, dt, A, B, C, D=None, z=None, dt_bias=None, dt_softplus=False):
100
- """
101
- Argument:
102
- state: (batch, dim, dstate)
103
- x: (batch, dim)
104
- dt: (batch, dim)
105
- A: (dim, dstate)
106
- B: (batch, dstate)
107
- C: (batch, dstate)
108
- D: (dim,)
109
- z: (batch, dim)
110
- dt_bias: (dim,)
111
- Return:
112
- out: (batch, dim)
113
- """
114
- batch, dim, dstate = state.shape
115
- assert x.shape == (batch, dim)
116
- assert dt.shape == x.shape
117
- assert A.shape == (dim, dstate)
118
- assert B.shape == (batch, dstate)
119
- assert C.shape == B.shape
120
- if D is not None:
121
- assert D.shape == (dim,)
122
- if z is not None:
123
- assert z.shape == x.shape
124
- if dt_bias is not None:
125
- assert dt_bias.shape == (dim,)
126
- out = torch.empty_like(x)
127
- grid = lambda META: (triton.cdiv(dim, META['BLOCK_SIZE_M']), batch)
128
- z_strides = ((z.stride(0), z.stride(1)) if z is not None else (0, 0))
129
- # We don't want autotune since it will overwrite the state
130
- # We instead tune by hand.
131
- BLOCK_SIZE_M, num_warps = ((32, 4) if dstate <= 16
132
- else ((16, 4) if dstate <= 32 else
133
- ((8, 4) if dstate <= 64 else
134
- ((4, 4) if dstate <= 128 else
135
- ((4, 8))))))
136
- with torch.cuda.device(x.device.index):
137
- _selective_scan_update_kernel[grid](
138
- state, x, dt, dt_bias, A, B, C, D, z, out,
139
- batch, dim, dstate,
140
- state.stride(0), state.stride(1), state.stride(2),
141
- x.stride(0), x.stride(1),
142
- dt.stride(0), dt.stride(1),
143
- dt_bias.stride(0) if dt_bias is not None else 0,
144
- A.stride(0), A.stride(1),
145
- B.stride(0), B.stride(1),
146
- C.stride(0), C.stride(1),
147
- D.stride(0) if D is not None else 0,
148
- z_strides[0], z_strides[1],
149
- out.stride(0), out.stride(1),
150
- dt_softplus,
151
- BLOCK_SIZE_M,
152
- num_warps=num_warps,
153
- )
154
- return out
155
-
156
-
157
- def selective_state_update_ref(state, x, dt, A, B, C, D=None, z=None, dt_bias=None, dt_softplus=False):
158
- """
159
- Argument:
160
- state: (batch, dim, dstate)
161
- x: (batch, dim)
162
- dt: (batch, dim)
163
- A: (dim, dstate)
164
- B: (batch, dstate)
165
- C: (batch, dstate)
166
- D: (dim,)
167
- z: (batch, dim)
168
- dt_bias: (dim,)
169
- Return:
170
- out: (batch, dim)
171
- """
172
- batch, dim, dstate = state.shape
173
- assert x.shape == (batch, dim)
174
- assert dt.shape == x.shape
175
- assert A.shape == (dim, dstate)
176
- assert B.shape == (batch, dstate)
177
- assert C.shape == B.shape
178
- if D is not None:
179
- assert D.shape == (dim,)
180
- if z is not None:
181
- assert z.shape == x.shape
182
- if dt_bias is not None:
183
- assert dt_bias.shape == (dim,)
184
- dt = dt + dt_bias
185
- dt = F.softplus(dt) if dt_softplus else dt
186
- dA = torch.exp(rearrange(dt, "b d -> b d 1") * A) # (batch, dim, dstate)
187
- dB = rearrange(dt, "b d -> b d 1") * rearrange(B, "b n -> b 1 n") # (batch, dim, dstate)
188
- state.copy_(state * dA + dB * rearrange(x, "b d -> b d 1")) # (batch, dim, dstate
189
- out = torch.einsum("bdn,bn->bd", state.to(C.dtype), C)
190
- if D is not None:
191
- out += (x * D).to(out.dtype)
192
- return (out if z is None else out * F.silu(z)).to(x.dtype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/mamba_ssm/utils/__init__.py DELETED
File without changes
mamba-main/mamba_ssm/utils/generation.py DELETED
@@ -1,387 +0,0 @@
1
- # Copyright (c) 2023, Albert Gu, Tri Dao.
2
- import gc
3
- import time
4
- from collections import namedtuple
5
- from dataclasses import dataclass, field
6
- from functools import partial
7
- from typing import Callable, Optional, Sequence, Union
8
-
9
- import torch
10
- import torch.nn.functional as F
11
- from einops import rearrange, repeat
12
- from torch import Tensor
13
- from torch.profiler import ProfilerActivity, profile, record_function
14
- from transformers.generation import GreedySearchDecoderOnlyOutput, SampleDecoderOnlyOutput, TextStreamer
15
-
16
-
17
- @dataclass
18
- class InferenceParams:
19
- """Inference parameters that are passed to the main model in order
20
- to efficienly calculate and store the context during inference."""
21
-
22
- max_seqlen: int
23
- max_batch_size: int
24
- seqlen_offset: int = 0
25
- batch_size_offset: int = 0
26
- key_value_memory_dict: dict = field(default_factory=dict)
27
- lengths_per_sample: Optional[Tensor] = None
28
-
29
- def reset(self, max_seqlen, max_batch_size):
30
- self.max_seqlen = max_seqlen
31
- self.max_batch_size = max_batch_size
32
- self.seqlen_offset = 0
33
- if self.lengths_per_sample is not None:
34
- self.lengths_per_sample.zero_()
35
-
36
-
37
- def modify_logits_for_min_p_filtering(logits, min_p):
38
- """Set the logits for none min_p values to -inf. Done in-place."""
39
- if min_p <= 0.0 or min_p >= 1.0:
40
- return
41
- indices_to_remove = logits < min_p
42
- logits.masked_fill_(indices_to_remove, float("-Inf"))
43
- # https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
44
- # https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L231
45
- def modify_logits_for_top_k_filtering(logits, top_k):
46
- """Set the logits for none top-k values to -inf. Done in-place."""
47
- indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
48
- logits.masked_fill_(indices_to_remove, float("-Inf"))
49
-
50
-
51
- # https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py
52
- # https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L170
53
- def modify_logits_for_top_p_filtering(logits, top_p):
54
- """Set the logits for none top-p values to -inf. Done in-place."""
55
- if top_p <= 0.0 or top_p >= 1.0:
56
- return
57
- # First sort and calculate cumulative sum of probabilities.
58
- sorted_logits, sorted_indices = torch.sort(logits, descending=False)
59
- cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
60
- # Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
61
- sorted_indices_to_remove = cumulative_probs <= (1 - top_p)
62
- # scatter sorted tensors to original indexing
63
- indices_to_remove = sorted_indices_to_remove.scatter(
64
- 1, sorted_indices, sorted_indices_to_remove
65
- )
66
- logits.masked_fill_(indices_to_remove, float("-inf"))
67
-
68
-
69
- def modify_logit_for_repetition_penalty(logits, prev_output_tokens, repetition_penalty=1.0):
70
- """Apply repetition penalty. See https://arxiv.org/abs/1909.05858
71
- logits: (batch_size, vocab_size)
72
- prev_output_tokens: (batch_size, seq_len)
73
- """
74
- if repetition_penalty == 1.0:
75
- return logits
76
- score = torch.gather(logits, 1, prev_output_tokens)
77
- # if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
78
- score = torch.where(score < 0, score * repetition_penalty, score / repetition_penalty)
79
- logits.scatter_(1, prev_output_tokens, score)
80
- return logits
81
-
82
-
83
- def sample(logits, top_k=1, top_p=0.0, min_p=0.0, temperature=1.0):
84
- """Sample from top-k logits.
85
- Arguments:
86
- logits: Tensor of shape (batch_size, vocab_size)
87
- """
88
- if top_k == 1: # Short-circuit for greedy decoding
89
- return logits.argmax(dim=-1)
90
- else:
91
- if top_p > 0.0:
92
- assert top_p <= 1.0, "top-p should be in (0, 1]."
93
- if top_k > 0:
94
- top_k = min(top_k, logits.size(-1)) # Safety check
95
- logits_top, indices = torch.topk(logits, top_k, dim=-1)
96
- if temperature != 1.0:
97
- logits_top /= temperature
98
- modify_logits_for_top_p_filtering(logits_top, top_p)
99
- return indices[
100
- torch.arange(indices.shape[0], device=indices.device),
101
- torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1),
102
- ]
103
- else:
104
- if min_p > 0.0:
105
- logits_top = logits.clone()
106
- max_prob = logits_top[..., 0].item()
107
- min_prob = max_prob * min_p
108
- modify_logits_for_min_p_filtering(logits_top, min_p)
109
- if temperature != 1.0:
110
- logits_top /= temperature
111
- return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(dim=-1)
112
- # Clone so that when we modify for top_p we don't change the original logits
113
- logits_top = logits / temperature if temperature != 1.0 else logits.clone()
114
- modify_logits_for_top_p_filtering(logits_top, top_p)
115
- return torch.multinomial(torch.softmax(logits_top, dim=-1), num_samples=1).squeeze(
116
- dim=-1
117
- )
118
-
119
-
120
- @torch.inference_mode()
121
- def decode(
122
- input_ids,
123
- model,
124
- max_length,
125
- top_k=1,
126
- top_p=0.0,
127
- min_p=0.0,
128
- temperature=1.0,
129
- repetition_penalty=1.0,
130
- eos_token_id=None,
131
- teacher_outputs=None,
132
- vocab_size=None,
133
- cg=False,
134
- enable_timing=False,
135
- streamer: Optional[TextStreamer] = None
136
- ):
137
- """Decoding, either greedy or with top-k or top-p sampling.
138
- If top-k = 0, don't limit the number of candidates (pure sampling).
139
- Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
140
- then top-p.
141
- We assume that all sequences in the same batch have the same length.
142
-
143
- Arguments:
144
- input_ids: (batch, seq_len)
145
- max_length: int
146
- teacher_outputs (optional): (batch, seq_len). If provided, instead of sampling from the
147
- logits, the next token is taken from the teacher_outputs. Useful for testing.
148
- Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields:
149
- sequences: (batch, max_length)
150
- scores: tuples of (batch, vocab_size)
151
- """
152
- if streamer is not None:
153
- streamer.put(input_ids.cpu())
154
-
155
- batch_size, seqlen_og = input_ids.shape
156
- teacher_output_len = teacher_outputs.shape[1] if teacher_outputs is not None else 0
157
- if cg:
158
- if not hasattr(model, "_decoding_cache"):
159
- model._decoding_cache = None
160
- model._decoding_cache = update_graph_cache(
161
- model,
162
- model._decoding_cache,
163
- batch_size,
164
- seqlen_og,
165
- max_length,
166
- )
167
- inference_params = model._decoding_cache.inference_params
168
- inference_params.reset(max_length, batch_size)
169
- else:
170
- inference_params = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size)
171
-
172
- def get_logits(input_ids, inference_params):
173
- decoding = inference_params.seqlen_offset > 0
174
- if decoding:
175
- position_ids = torch.full(
176
- (batch_size, 1),
177
- inference_params.seqlen_offset,
178
- dtype=torch.long,
179
- device=input_ids.device,
180
- )
181
- else:
182
- position_ids = None
183
- if not cg or not decoding:
184
- logits = model(
185
- input_ids,
186
- position_ids=position_ids,
187
- inference_params=inference_params,
188
- num_last_tokens=1,
189
- ).logits.squeeze(dim=1)
190
- else:
191
- logits = model._decoding_cache.run(
192
- input_ids, position_ids, inference_params.seqlen_offset
193
- ).squeeze(dim=1)
194
- return logits[..., :vocab_size] if vocab_size is not None else logits
195
-
196
- def sample_tokens(logits, inference_params):
197
- if teacher_outputs is None or teacher_output_len <= inference_params.seqlen_offset:
198
- token = sample(logits, top_k=top_k, top_p=top_p, min_p=min_p, temperature=temperature)
199
- else:
200
- token = teacher_outputs[:, inference_params.seqlen_offset]
201
- # return rearrange(token, "b -> b 1")
202
- return token.unsqueeze(1)
203
-
204
- def should_stop(current_token, inference_params):
205
- if inference_params.seqlen_offset == 0:
206
- return False
207
- if eos_token_id is not None and (current_token == eos_token_id).all():
208
- return True
209
- if inference_params.seqlen_offset >= max_length - 1:
210
- return True
211
- return False
212
-
213
- start = torch.cuda.Event(enable_timing=enable_timing)
214
- end = torch.cuda.Event(enable_timing=enable_timing)
215
-
216
- if enable_timing:
217
- start.record()
218
- scores, sequences = [], [input_ids]
219
- sequences_cat = input_ids
220
- while not should_stop(sequences[-1], inference_params):
221
- scores.append(get_logits(sequences[-1], inference_params))
222
- inference_params.seqlen_offset += sequences[-1].shape[1]
223
- if repetition_penalty == 1.0:
224
- sampled_tokens = sample_tokens(scores[-1], inference_params)
225
- else:
226
- logits = modify_logit_for_repetition_penalty(
227
- scores[-1].clone(), sequences_cat, repetition_penalty
228
- )
229
- sampled_tokens = sample_tokens(logits, inference_params)
230
- sequences_cat = torch.cat([sequences_cat, sampled_tokens], dim=1)
231
- sequences.append(sampled_tokens)
232
- if streamer is not None:
233
- streamer.put(sampled_tokens.cpu())
234
- if streamer is not None:
235
- streamer.end()
236
- if enable_timing:
237
- end.record()
238
- torch.cuda.synchronize()
239
- print(f"Prompt processing + decoding time: {(start.elapsed_time(end)):.0f}ms")
240
- output_cls = GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
241
- return output_cls(sequences=torch.cat(sequences, dim=1), scores=tuple(scores))
242
-
243
-
244
- class GenerationMixin:
245
- def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
246
- raise NotImplementedError
247
-
248
- def generate(
249
- self,
250
- input_ids,
251
- max_length,
252
- top_k=1,
253
- top_p=0.0,
254
- min_p=0.0,
255
- temperature=1.0,
256
- return_dict_in_generate=False,
257
- output_scores=False,
258
- **kwargs,
259
- ):
260
- output = decode(
261
- input_ids, self, max_length, top_k=top_k, top_p=top_p, min_p = min_p, temperature=temperature, **kwargs
262
- )
263
- if not output_scores:
264
- output.scores = None
265
- return output if return_dict_in_generate else output.sequences
266
-
267
-
268
- @dataclass
269
- class DecodingCGCache:
270
- max_batch_size: int = 0
271
- max_seqlen: int = 0
272
- device = None
273
- dtype = None
274
- callables: dict = field(default_factory=dict)
275
- mempool = None
276
- inference_params: Optional[InferenceParams] = None
277
- run: Optional[Callable] = None
278
-
279
-
280
- @torch.inference_mode()
281
- def update_graph_cache(
282
- model,
283
- cache,
284
- batch_size,
285
- seqlen_og,
286
- max_seqlen,
287
- decoding_seqlens=(1,),
288
- dtype=None,
289
- n_warmups=2,
290
- ):
291
- if cache is None:
292
- cache = DecodingCGCache()
293
- param_example = next(iter(model.parameters()))
294
- device = param_example.device
295
- if dtype is None:
296
- dtype = param_example.dtype
297
- if (
298
- (device, dtype) != (cache.device, cache.dtype)
299
- or batch_size > cache.max_batch_size
300
- or max_seqlen > cache.max_seqlen
301
- ): # Invalidate the cache
302
- cache.callables = {}
303
- cache.mempool = None
304
- cache.inference_params = None
305
- gc.collect()
306
- cache.device, cache.dtype = device, dtype
307
- cache.max_batch_size, cache.max_seqlen = batch_size, max_seqlen
308
- assert hasattr(model, "allocate_inference_cache"), "CUDA graph decoding requires that the model has a method allocate_inference_cache"
309
- inf_cache = model.allocate_inference_cache(batch_size, max_seqlen, dtype)
310
- lengths_per_sample = torch.full((batch_size,), seqlen_og, dtype=torch.int32, device=device)
311
- cache.inference_params = InferenceParams(
312
- max_seqlen=max_seqlen,
313
- max_batch_size=batch_size,
314
- seqlen_offset=seqlen_og,
315
- key_value_memory_dict=inf_cache,
316
- lengths_per_sample=lengths_per_sample,
317
- )
318
- cache.mempool = torch.cuda.graphs.graph_pool_handle()
319
- for decoding_seqlen in decoding_seqlens:
320
- if (batch_size, decoding_seqlen) not in cache.callables:
321
- cache.callables[batch_size, decoding_seqlen] = capture_graph(
322
- model,
323
- cache.inference_params,
324
- batch_size,
325
- max_seqlen,
326
- decoding_seqlen=decoding_seqlen,
327
- mempool=cache.mempool,
328
- n_warmups=n_warmups,
329
- )
330
-
331
- def dispatch(input_ids, position_ids, seqlen):
332
- batch_size, decoding_seqlen = input_ids.shape[:2]
333
- return cache.callables[batch_size, decoding_seqlen](input_ids, position_ids, seqlen)
334
-
335
- cache.run = dispatch
336
- cache.inference_params.seqlen_offset = 0 # Reset so it's not confusing
337
- return cache
338
-
339
-
340
- def capture_graph(
341
- model, inference_params, batch_size, max_seqlen, decoding_seqlen=1, mempool=None, n_warmups=2
342
- ):
343
- device = next(iter(model.parameters())).device
344
- input_ids = torch.full((batch_size, decoding_seqlen), 0, dtype=torch.long, device=device)
345
- position_ids = torch.full((batch_size, decoding_seqlen), 0, dtype=torch.long, device=device)
346
- seqlen_offset_og = inference_params.seqlen_offset
347
- inference_params.seqlen_offset = max_seqlen - decoding_seqlen
348
- inference_params.lengths_per_sample[:] = inference_params.seqlen_offset
349
-
350
- # Warmup before capture
351
- s = torch.cuda.Stream()
352
- s.wait_stream(torch.cuda.current_stream())
353
- with torch.cuda.stream(s):
354
- for _ in range(n_warmups):
355
- logits = model(
356
- input_ids,
357
- position_ids=position_ids,
358
- inference_params=inference_params,
359
- num_last_tokens=decoding_seqlen,
360
- ).logits
361
- s.synchronize()
362
- # This might be needed for correctness if we run with NCCL_GRAPH_MIXING_SUPPORT=0,
363
- # which requires that graph launch and non-captured launch to not overlap (I think,
364
- # that's how I interpret the documentation). I'm not sure if this is required.
365
- if torch.distributed.is_initialized():
366
- torch.distributed.barrier()
367
- torch.cuda.current_stream().wait_stream(s)
368
- # Captures the graph
369
- # To allow capture, automatically sets a side stream as the current stream in the context
370
- graph = torch.cuda.CUDAGraph()
371
- with torch.cuda.graph(graph, pool=mempool):
372
- logits = model(
373
- input_ids,
374
- position_ids=position_ids,
375
- inference_params=inference_params,
376
- num_last_tokens=decoding_seqlen,
377
- ).logits
378
-
379
- def run(new_input_ids, new_position_ids, seqlen):
380
- inference_params.lengths_per_sample[:] = seqlen
381
- input_ids.copy_(new_input_ids)
382
- position_ids.copy_(new_position_ids)
383
- graph.replay()
384
- return logits.clone()
385
-
386
- inference_params.seqlen_offset = seqlen_offset_og
387
- return run
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/mamba_ssm/utils/hf.py DELETED
@@ -1,23 +0,0 @@
1
- import json
2
-
3
- import torch
4
-
5
- from transformers.utils import WEIGHTS_NAME, CONFIG_NAME
6
- from transformers.utils.hub import cached_file
7
-
8
-
9
- def load_config_hf(model_name):
10
- resolved_archive_file = cached_file(model_name, CONFIG_NAME, _raise_exceptions_for_missing_entries=False)
11
- return json.load(open(resolved_archive_file))
12
-
13
-
14
- def load_state_dict_hf(model_name, device=None, dtype=None):
15
- # If not fp32, then we don't want to load directly to the GPU
16
- mapped_device = "cpu" if dtype not in [torch.float32, None] else device
17
- resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
18
- return torch.load(resolved_archive_file, map_location=mapped_device)
19
- # Convert dtype before moving to GPU to save memory
20
- if dtype is not None:
21
- state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
22
- state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
23
- return state_dict
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/setup.py DELETED
@@ -1,276 +0,0 @@
1
- # Copyright (c) 2023, Albert Gu, Tri Dao.
2
- import sys
3
- import warnings
4
- import os
5
- import re
6
- import ast
7
- from pathlib import Path
8
- from packaging.version import parse, Version
9
- import platform
10
- import shutil
11
-
12
- from setuptools import setup, find_packages
13
- import subprocess
14
-
15
- import urllib.request
16
- import urllib.error
17
- from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
18
-
19
- import torch
20
- from torch.utils.cpp_extension import (
21
- BuildExtension,
22
- CppExtension,
23
- CUDAExtension,
24
- CUDA_HOME,
25
- )
26
-
27
-
28
- with open("README.md", "r", encoding="utf-8") as fh:
29
- long_description = fh.read()
30
-
31
-
32
- # ninja build does not work unless include_dirs are abs path
33
- this_dir = os.path.dirname(os.path.abspath(__file__))
34
-
35
- PACKAGE_NAME = "mamba_ssm"
36
-
37
- BASE_WHEEL_URL = "https://github.com/state-spaces/mamba/releases/download/{tag_name}/{wheel_name}"
38
-
39
- # FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
40
- # SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
41
- FORCE_BUILD = os.getenv("MAMBA_FORCE_BUILD", "FALSE") == "TRUE"
42
- SKIP_CUDA_BUILD = os.getenv("MAMBA_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
43
- # For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
44
- FORCE_CXX11_ABI = os.getenv("MAMBA_FORCE_CXX11_ABI", "FALSE") == "TRUE"
45
-
46
-
47
- def get_platform():
48
- """
49
- Returns the platform name as used in wheel filenames.
50
- """
51
- if sys.platform.startswith("linux"):
52
- return "linux_x86_64"
53
- elif sys.platform == "darwin":
54
- mac_version = ".".join(platform.mac_ver()[0].split(".")[:2])
55
- return f"macosx_{mac_version}_x86_64"
56
- elif sys.platform == "win32":
57
- return "win_amd64"
58
- else:
59
- raise ValueError("Unsupported platform: {}".format(sys.platform))
60
-
61
-
62
- def get_cuda_bare_metal_version(cuda_dir):
63
- raw_output = subprocess.check_output(
64
- [cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
65
- )
66
- output = raw_output.split()
67
- release_idx = output.index("release") + 1
68
- bare_metal_version = parse(output[release_idx].split(",")[0])
69
-
70
- return raw_output, bare_metal_version
71
-
72
-
73
- def check_if_cuda_home_none(global_option: str) -> None:
74
- if CUDA_HOME is not None:
75
- return
76
- # warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary
77
- # in that case.
78
- warnings.warn(
79
- f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
80
- "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
81
- "only images whose names contain 'devel' will provide nvcc."
82
- )
83
-
84
-
85
- def append_nvcc_threads(nvcc_extra_args):
86
- return nvcc_extra_args + ["--threads", "4"]
87
-
88
-
89
- cmdclass = {}
90
- ext_modules = []
91
-
92
- if not SKIP_CUDA_BUILD:
93
- print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
94
- TORCH_MAJOR = int(torch.__version__.split(".")[0])
95
- TORCH_MINOR = int(torch.__version__.split(".")[1])
96
-
97
- check_if_cuda_home_none(PACKAGE_NAME)
98
- # Check, if CUDA11 is installed for compute capability 8.0
99
- cc_flag = []
100
- if CUDA_HOME is not None:
101
- _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
102
- if bare_metal_version < Version("11.6"):
103
- raise RuntimeError(
104
- f"{PACKAGE_NAME} is only supported on CUDA 11.6 and above. "
105
- "Note: make sure nvcc has a supported version by running nvcc -V."
106
- )
107
-
108
- cc_flag.append("-gencode")
109
- cc_flag.append("arch=compute_70,code=sm_70")
110
- cc_flag.append("-gencode")
111
- cc_flag.append("arch=compute_80,code=sm_80")
112
- if bare_metal_version >= Version("11.8"):
113
- cc_flag.append("-gencode")
114
- cc_flag.append("arch=compute_90,code=sm_90")
115
-
116
- # HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
117
- # torch._C._GLIBCXX_USE_CXX11_ABI
118
- # https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
119
- if FORCE_CXX11_ABI:
120
- torch._C._GLIBCXX_USE_CXX11_ABI = True
121
-
122
- ext_modules.append(
123
- CUDAExtension(
124
- name="selective_scan_cuda",
125
- sources=[
126
- "csrc/selective_scan/selective_scan.cpp",
127
- "csrc/selective_scan/selective_scan_fwd_fp32.cu",
128
- "csrc/selective_scan/selective_scan_fwd_fp16.cu",
129
- "csrc/selective_scan/selective_scan_fwd_bf16.cu",
130
- "csrc/selective_scan/selective_scan_bwd_fp32_real.cu",
131
- "csrc/selective_scan/selective_scan_bwd_fp32_complex.cu",
132
- "csrc/selective_scan/selective_scan_bwd_fp16_real.cu",
133
- "csrc/selective_scan/selective_scan_bwd_fp16_complex.cu",
134
- "csrc/selective_scan/selective_scan_bwd_bf16_real.cu",
135
- "csrc/selective_scan/selective_scan_bwd_bf16_complex.cu",
136
- ],
137
- extra_compile_args={
138
- "cxx": ["-O3", "-std=c++17"],
139
- "nvcc": append_nvcc_threads(
140
- [
141
- "-O3",
142
- "-std=c++17",
143
- "-U__CUDA_NO_HALF_OPERATORS__",
144
- "-U__CUDA_NO_HALF_CONVERSIONS__",
145
- "-U__CUDA_NO_BFLOAT16_OPERATORS__",
146
- "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
147
- "-U__CUDA_NO_BFLOAT162_OPERATORS__",
148
- "-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
149
- "--expt-relaxed-constexpr",
150
- "--expt-extended-lambda",
151
- "--use_fast_math",
152
- "--ptxas-options=-v",
153
- "-lineinfo",
154
- ]
155
- + cc_flag
156
- ),
157
- },
158
- include_dirs=[Path(this_dir) / "csrc" / "selective_scan"],
159
- )
160
- )
161
-
162
-
163
- def get_package_version():
164
- with open(Path(this_dir) / PACKAGE_NAME / "__init__.py", "r") as f:
165
- version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
166
- public_version = ast.literal_eval(version_match.group(1))
167
- local_version = os.environ.get("MAMBA_LOCAL_VERSION")
168
- if local_version:
169
- return f"{public_version}+{local_version}"
170
- else:
171
- return str(public_version)
172
-
173
-
174
- def get_wheel_url():
175
- # Determine the version numbers that will be used to determine the correct wheel
176
- # We're using the CUDA version used to build torch, not the one currently installed
177
- # _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
178
- torch_cuda_version = parse(torch.version.cuda)
179
- torch_version_raw = parse(torch.__version__)
180
- # For CUDA 11, we only compile for CUDA 11.8, and for CUDA 12 we only compile for CUDA 12.2
181
- # to save CI time. Minor versions should be compatible.
182
- torch_cuda_version = parse("11.8") if torch_cuda_version.major == 11 else parse("12.2")
183
- python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
184
- platform_name = get_platform()
185
- mamba_ssm_version = get_package_version()
186
- # cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
187
- cuda_version = f"{torch_cuda_version.major}{torch_cuda_version.minor}"
188
- torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}"
189
- cxx11_abi = str(torch._C._GLIBCXX_USE_CXX11_ABI).upper()
190
-
191
- # Determine wheel URL based on CUDA version, torch version, python version and OS
192
- wheel_filename = f"{PACKAGE_NAME}-{mamba_ssm_version}+cu{cuda_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl"
193
- wheel_url = BASE_WHEEL_URL.format(
194
- tag_name=f"v{mamba_ssm_version}", wheel_name=wheel_filename
195
- )
196
- return wheel_url, wheel_filename
197
-
198
-
199
- class CachedWheelsCommand(_bdist_wheel):
200
- """
201
- The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
202
- find an existing wheel (which is currently the case for all installs). We use
203
- the environment parameters to detect whether there is already a pre-built version of a compatible
204
- wheel available and short-circuits the standard full build pipeline.
205
- """
206
-
207
- def run(self):
208
- if FORCE_BUILD:
209
- return super().run()
210
-
211
- wheel_url, wheel_filename = get_wheel_url()
212
- print("Guessing wheel URL: ", wheel_url)
213
- try:
214
- urllib.request.urlretrieve(wheel_url, wheel_filename)
215
-
216
- # Make the archive
217
- # Lifted from the root wheel processing command
218
- # https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
219
- if not os.path.exists(self.dist_dir):
220
- os.makedirs(self.dist_dir)
221
-
222
- impl_tag, abi_tag, plat_tag = self.get_tag()
223
- archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
224
-
225
- wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
226
- print("Raw wheel path", wheel_path)
227
- shutil.move(wheel_filename, wheel_path)
228
- except urllib.error.HTTPError:
229
- print("Precompiled wheel not found. Building from source...")
230
- # If the wheel could not be downloaded, build from source
231
- super().run()
232
-
233
-
234
- setup(
235
- name=PACKAGE_NAME,
236
- version=get_package_version(),
237
- packages=find_packages(
238
- exclude=(
239
- "build",
240
- "csrc",
241
- "include",
242
- "tests",
243
- "dist",
244
- "docs",
245
- "benchmarks",
246
- "mamba_ssm.egg-info",
247
- )
248
- ),
249
- author="Tri Dao, Albert Gu",
250
251
- description="Mamba state-space model",
252
- long_description=long_description,
253
- long_description_content_type="text/markdown",
254
- url="https://github.com/state-spaces/mamba",
255
- classifiers=[
256
- "Programming Language :: Python :: 3",
257
- "License :: OSI Approved :: BSD License",
258
- "Operating System :: Unix",
259
- ],
260
- ext_modules=ext_modules,
261
- cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": BuildExtension}
262
- if ext_modules
263
- else {
264
- "bdist_wheel": CachedWheelsCommand,
265
- },
266
- python_requires=">=3.7",
267
- install_requires=[
268
- "torch",
269
- "packaging",
270
- "ninja",
271
- "einops",
272
- "triton",
273
- "transformers",
274
- # "causal_conv1d>=1.2.0",
275
- ],
276
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/tests/ops/test_selective_scan.py DELETED
@@ -1,247 +0,0 @@
1
- # Copyright (C) 2023, Tri Dao.
2
-
3
- import math
4
-
5
- import torch
6
- import torch.nn.functional as F
7
- import pytest
8
-
9
- from einops import rearrange
10
-
11
- from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref
12
- from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, mamba_inner_ref
13
-
14
-
15
- # @pytest.mark.parametrize('wtype', [torch.float32, torch.complex64])
16
- @pytest.mark.parametrize('wtype', [torch.float32])
17
- # @pytest.mark.parametrize('itype', [torch.float32, torch.float16, torch.bfloat16])
18
- @pytest.mark.parametrize('itype', [torch.float32])
19
- # @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 372, 512, 784, 1024, 1134, 2048, 4096])
20
- @pytest.mark.parametrize('seqlen', [128, 256, 512, 1024, 2048, 4096])
21
- # @pytest.mark.parametrize('seqlen', [128])
22
- # @pytest.mark.parametrize("return_last_state", [False, True])
23
- @pytest.mark.parametrize("return_last_state", [True])
24
- # @pytest.mark.parametrize('has_delta_bias', [False, True])
25
- @pytest.mark.parametrize('has_delta_bias', [True])
26
- # @pytest.mark.parametrize('delta_softplus', [False, True])
27
- @pytest.mark.parametrize('delta_softplus', [True])
28
- # @pytest.mark.parametrize('has_z', [False, True])
29
- @pytest.mark.parametrize('has_z', [True])
30
- # @pytest.mark.parametrize('has_D', [False, True])
31
- @pytest.mark.parametrize('has_D', [True])
32
- @pytest.mark.parametrize("varBC_groups", [1, 2])
33
- # @pytest.mark.parametrize("varBC_groups", [1])
34
- # @pytest.mark.parametrize("is_variable_C", [False, True])
35
- @pytest.mark.parametrize("is_variable_C", [True])
36
- # @pytest.mark.parametrize("is_variable_B", [False, True])
37
- @pytest.mark.parametrize("is_variable_B", [True])
38
- def test_selective_scan(is_variable_B, is_variable_C, varBC_groups, has_D, has_z, has_delta_bias,
39
- delta_softplus, return_last_state, seqlen, itype, wtype):
40
- if varBC_groups > 1 and (not is_variable_B or not is_variable_C):
41
- pytest.skip() # This config is not applicable
42
- device = 'cuda'
43
- rtol, atol = (6e-4, 2e-3) if itype == torch.float32 else (3e-3, 5e-3)
44
- if itype == torch.bfloat16:
45
- rtol, atol = 3e-2, 5e-2
46
- rtolw, atolw = (1e-3, 1e-3)
47
- if has_z: # If we have z, the errors on the weights seem higher
48
- rtolw = max(rtolw, rtol)
49
- atolw = max(atolw, atol)
50
- # set seed
51
- torch.random.manual_seed(0)
52
- batch_size = 2
53
- dim = 4
54
- dstate = 8
55
- is_complex = wtype == torch.complex64
56
- A = (-0.5 * torch.rand(dim, dstate, device=device, dtype=wtype)).requires_grad_()
57
- if not is_variable_B:
58
- B_shape = (dim, dstate)
59
- elif varBC_groups == 1:
60
- B_shape = (batch_size, dstate, seqlen if not is_complex else seqlen * 2)
61
- else:
62
- B_shape = (batch_size, varBC_groups, dstate, seqlen if not is_complex else seqlen * 2)
63
- B = torch.randn(*B_shape, device=device, dtype=wtype if not is_variable_B else itype,
64
- requires_grad=True)
65
- if not is_variable_C:
66
- C_shape = (dim, dstate)
67
- elif varBC_groups == 1:
68
- C_shape = (batch_size, dstate, seqlen if not is_complex else seqlen * 2)
69
- else:
70
- C_shape = (batch_size, varBC_groups, dstate, seqlen if not is_complex else seqlen * 2)
71
- C = torch.randn(*C_shape, device=device, dtype=wtype if not is_variable_C else itype,
72
- requires_grad=True)
73
- if has_D:
74
- D = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
75
- else:
76
- D = None
77
- if has_z:
78
- z = torch.randn(batch_size, dim, seqlen, device=device, dtype=itype, requires_grad=True)
79
- else:
80
- z = None
81
- if has_delta_bias:
82
- delta_bias = (0.5 * torch.rand(dim, device=device, dtype=torch.float32)).requires_grad_()
83
- else:
84
- delta_bias = None
85
- u = torch.randn(batch_size, dim, seqlen, device=device, dtype=itype, requires_grad=True)
86
- delta = (0.5 * torch.rand(batch_size, dim, seqlen, device=device, dtype=itype)).requires_grad_()
87
- A_ref = A.detach().clone().requires_grad_()
88
- B_ref = B.detach().clone().requires_grad_()
89
- C_ref = C.detach().clone().requires_grad_()
90
- D_ref = D.detach().clone().requires_grad_() if D is not None else None
91
- z_ref = z.detach().clone().requires_grad_() if z is not None else None
92
- u_ref = u.detach().clone().requires_grad_()
93
- delta_ref = delta.detach().clone().requires_grad_()
94
- delta_bias_ref = delta_bias.detach().clone().requires_grad_() if delta_bias is not None else None
95
- out, *rest = selective_scan_fn(
96
- u, delta, A, B, C, D, z=z,
97
- delta_bias=delta_bias, delta_softplus=delta_softplus,
98
- return_last_state=return_last_state
99
- )
100
- if return_last_state:
101
- state = rest[0]
102
- out_ref, *rest = selective_scan_ref(
103
- u_ref, delta_ref, A_ref, B_ref, C_ref, D_ref, z=z_ref,
104
- delta_bias=delta_bias_ref, delta_softplus=delta_softplus,
105
- return_last_state=return_last_state
106
- )
107
- if return_last_state:
108
- state_ref = rest[0]
109
- # dA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
110
- # dt_u = delta * u
111
-
112
- print(f'Output max diff: {(out - out_ref).abs().max().item()}')
113
- print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
114
- assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
115
- if return_last_state:
116
- print(f'State max diff: {(state - state_ref).abs().max().item()}')
117
- assert torch.allclose(state, state_ref, rtol=rtol, atol=atol)
118
-
119
- g = torch.randn_like(out)
120
- out_ref.backward(g)
121
- out.backward(g)
122
-
123
- print(f'du max diff: {(u.grad - u_ref.grad).abs().max().item()}')
124
- print(f'ddelta max diff: {(delta.grad - delta_ref.grad).abs().max().item()}')
125
- print(f'dA max diff: {(A.grad - A_ref.grad).abs().max().item()}')
126
- print(f'dB max diff: {(B.grad - B_ref.grad).abs().max().item()}')
127
- print(f'dC max diff: {(C.grad - C_ref.grad).abs().max().item()}')
128
- if has_D:
129
- print(f'dD max diff: {(D.grad - D_ref.grad).abs().max().item()}')
130
- if has_z:
131
- print(f'dz max diff: {(z.grad - z_ref.grad).abs().max().item()}')
132
- if has_delta_bias:
133
- print(f'ddelta_bias max diff: {(delta_bias.grad - delta_bias_ref.grad).abs().max().item()}')
134
-
135
- assert torch.allclose(u.grad, u_ref.grad.to(dtype=itype), rtol=rtol * 2, atol=atol * 2)
136
- assert torch.allclose(delta.grad, delta_ref.grad.to(dtype=itype), rtol=rtol * 5, atol=atol * 10)
137
- assert torch.allclose(A.grad, A_ref.grad, rtol=rtolw, atol=atolw * 5)
138
- assert torch.allclose(B.grad, B_ref.grad, rtol=rtolw if not is_variable_B else rtol,
139
- atol=atolw if not is_variable_B else atol)
140
- assert torch.allclose(C.grad, C_ref.grad, rtol=rtolw if not is_variable_C else rtol,
141
- atol=atolw if not is_variable_C else atol)
142
- if has_D:
143
- assert torch.allclose(D.grad, D_ref.grad, rtol=rtolw, atol=atolw)
144
- if has_z:
145
- assert torch.allclose(z.grad, z_ref.grad, rtol=rtolw, atol=atolw)
146
- if has_delta_bias:
147
- assert torch.allclose(delta_bias.grad, delta_bias_ref.grad, rtol=rtolw, atol=atolw)
148
-
149
-
150
- @pytest.mark.parametrize('wtype', [torch.float32, torch.complex64])
151
- # @pytest.mark.parametrize('wtype', [torch.complex64])
152
- # @pytest.mark.parametrize('itype', [torch.float32, torch.float16, torch.bfloat16])
153
- @pytest.mark.parametrize('itype', [torch.float32])
154
- # @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 372, 512, 784, 1024, 1134, 2048, 4096])
155
- @pytest.mark.parametrize('seqlen', [128])
156
- @pytest.mark.parametrize("is_variable_C", [False, True])
157
- # @pytest.mark.parametrize("is_variable_C", [False])
158
- @pytest.mark.parametrize("is_variable_B", [False, True])
159
- # @pytest.mark.parametrize("is_variable_B", [True])
160
- def test_mamba_inner_fn(is_variable_B, is_variable_C, seqlen, itype, wtype):
161
- device = 'cuda'
162
- rtol, atol = (6e-4, 2e-3) if itype == torch.float32 else (3e-3, 5e-3)
163
- if itype == torch.bfloat16:
164
- rtol, atol = 3e-2, 5e-2
165
- rtolw, atolw = (1e-3, 1e-3)
166
- # If we have z, the errors on the weights seem higher
167
- rtolw = max(rtolw, rtol)
168
- atolw = max(atolw, atol)
169
- # set seed
170
- torch.random.manual_seed(0)
171
- batch_size = 2
172
- dim = 768
173
- dstate = 8
174
- dt_rank = 48
175
- is_complex = wtype == torch.complex64
176
- xz = torch.randn(batch_size, 2 * dim, seqlen, device=device, dtype=itype, requires_grad=True)
177
- conv1d_weight = torch.randn(dim, 1, 3, device=device, dtype=torch.float32, requires_grad=True)
178
- conv1d_bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
179
- x_proj_weight = torch.randn(dt_rank + (bool(is_variable_B) + bool(is_variable_C)) * dstate
180
- * (1 if not is_complex else 2),
181
- dim, device=device, dtype=itype, requires_grad=True)
182
- delta_proj_weight = torch.randn(dim, dt_rank, device=device, dtype=itype, requires_grad=True)
183
- out_proj_weight = torch.randn(dim // 2, dim, device=device, dtype=itype, requires_grad=True)
184
- out_proj_bias = None
185
- A = (-0.5 * torch.rand(dim, dstate, device=device, dtype=wtype)).requires_grad_()
186
- B = (torch.randn(dim, dstate, device=device, dtype=wtype, requires_grad=True)
187
- if not is_variable_B else None)
188
- C = (torch.randn(dim, dstate, device=device, dtype=wtype, requires_grad=True)
189
- if not is_variable_C else None)
190
- D = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
191
- delta_bias = (0.5 * torch.rand(dim, device=device, dtype=torch.float32)).requires_grad_()
192
- B_proj_bias = None
193
- C_proj_bias = None
194
- xz_ref = xz.detach().clone().requires_grad_()
195
- conv1d_weight_ref = conv1d_weight.detach().clone().requires_grad_()
196
- conv1d_bias_ref = conv1d_bias.detach().clone().requires_grad_()
197
- x_proj_weight_ref = x_proj_weight.detach().clone().requires_grad_()
198
- delta_proj_weight_ref = delta_proj_weight.detach().clone().requires_grad_()
199
- out_proj_weight_ref = out_proj_weight.detach().clone().requires_grad_()
200
- out_proj_bias_ref = (out_proj_bias.detach().clone().requires_grad_()
201
- if out_proj_bias is not None else None)
202
- A_ref = A.detach().clone().requires_grad_()
203
- B_ref = B.detach().clone().requires_grad_() if B is not None else None
204
- C_ref = C.detach().clone().requires_grad_() if C is not None else None
205
- D_ref = D.detach().clone().requires_grad_()
206
- delta_bias_ref = delta_bias.detach().clone().requires_grad_() if delta_bias is not None else None
207
- out = mamba_inner_fn(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
208
- out_proj_weight, out_proj_bias,
209
- A, B, C, D, delta_bias=delta_bias, delta_softplus=True)
210
- out_ref = mamba_inner_ref(xz_ref, conv1d_weight_ref, conv1d_bias_ref, x_proj_weight_ref,
211
- delta_proj_weight_ref, out_proj_weight_ref, out_proj_bias_ref,
212
- A_ref, B_ref, C_ref, D_ref,
213
- delta_bias=delta_bias_ref, delta_softplus=True)
214
- # dA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
215
- # dt_u = delta * u
216
-
217
- print(f'Output max diff: {(out - out_ref).abs().max().item()}')
218
- print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
219
- assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
220
-
221
- g = torch.randn_like(out)
222
- out_ref.backward(g)
223
- out.backward(g)
224
-
225
- print(f'dxz max diff: {(xz.grad - xz_ref.grad).abs().max().item()}')
226
- print(f'dA max diff: {(A.grad - A_ref.grad).abs().max().item()}')
227
- if not is_variable_B:
228
- print(f'dB max diff: {(B.grad - B_ref.grad).abs().max().item()}')
229
- if not is_variable_C:
230
- print(f'dC max diff: {(C.grad - C_ref.grad).abs().max().item()}')
231
- print(f'dD max diff: {(D.grad - D_ref.grad).abs().max().item()}')
232
- print(f'ddelta_bias max diff: {(delta_bias.grad - delta_bias_ref.grad).abs().max().item()}')
233
- print(f'dout_proj_weight max diff: {(out_proj_weight.grad - out_proj_weight_ref.grad).abs().max().item()}')
234
- print(f'ddelta_proj_weight max diff: {(delta_proj_weight.grad - delta_proj_weight_ref.grad).abs().max().item()}')
235
- print(f'dx_proj_weight max diff: {(x_proj_weight.grad - x_proj_weight_ref.grad).abs().max().item()}')
236
- print(f'dconv1d_weight max diff: {(conv1d_weight.grad - conv1d_weight_ref.grad).abs().max().item()}')
237
- print(f'dconv1d_bias max diff: {(conv1d_bias.grad - conv1d_bias_ref.grad).abs().max().item()}')
238
-
239
- # assert torch.allclose(xz.grad, xz_ref.grad.to(dtype=itype), rtol=rtol * 2, atol=atol * 2)
240
- # assert torch.allclose(delta.grad, delta_ref.grad.to(dtype=itype), rtol=rtol * 5, atol=atol * 10)
241
- # assert torch.allclose(A.grad, A_ref.grad, rtol=rtolw, atol=atolw * 5)
242
- # assert torch.allclose(B.grad, B_ref.grad, rtol=rtolw if not is_variable_B else rtol,
243
- # atol=atolw if not is_variable_B else atol)
244
- # assert torch.allclose(C.grad, C_ref.grad, rtol=rtolw if not is_variable_C else rtol,
245
- # atol=atolw if not is_variable_C else atol)
246
- # assert torch.allclose(D.grad, D_ref.grad, rtol=rtolw, atol=atolw)
247
- # assert torch.allclose(delta_bias.grad, delta_bias_ref.grad, rtol=rtolw, atol=atolw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba-main/tests/ops/triton/test_selective_state_update.py DELETED
@@ -1,49 +0,0 @@
1
- # Copyright (C) 2023, Tri Dao.
2
-
3
- import math
4
-
5
- import torch
6
- import torch.nn.functional as F
7
- import pytest
8
-
9
- from einops import rearrange
10
-
11
- from mamba_ssm.ops.triton.selective_state_update import selective_state_update, selective_state_update_ref
12
-
13
-
14
- @pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
15
- # @pytest.mark.parametrize('itype', [torch.float16])
16
- @pytest.mark.parametrize("has_z", [False, True])
17
- # @pytest.mark.parametrize('has_z', [True])
18
- @pytest.mark.parametrize("dstate", [16, 32, 64])
19
- # @pytest.mark.parametrize("dstate", [16])
20
- @pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
21
- # @pytest.mark.parametrize("dim", [2048])
22
- def test_selective_state_update(dim, dstate, has_z, itype):
23
- device = "cuda"
24
- rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (5e-3, 1e-2)
25
- if itype == torch.bfloat16:
26
- rtol, atol = 1e-2, 5e-2
27
- # set seed
28
- torch.random.manual_seed(0)
29
- batch_size = 2
30
- state = torch.randn(batch_size, dim, dstate, dtype=itype, device=device)
31
- x = torch.randn(batch_size, dim, device=device, dtype=itype)
32
- dt = torch.randn(batch_size, dim, device=device, dtype=itype)
33
- dt_bias = torch.rand(dim, device=device) - 4.0
34
- A = -torch.rand(dim, dstate, device=device) - 1.0
35
- B = torch.randn(batch_size, dstate, device=device)
36
- C = torch.randn(batch_size, dstate, device=device)
37
- D = torch.randn(dim, device=device)
38
- if has_z:
39
- z = torch.randn_like(x)
40
- else:
41
- z = None
42
- state_ref = state.detach().clone()
43
- out = selective_state_update(state, x, dt, A, B, C, D=D, z=z, dt_bias=dt_bias, dt_softplus=True)
44
- out_ref = selective_state_update_ref(state_ref, x, dt, A, B, C, D=D, z=z, dt_bias=dt_bias, dt_softplus=True)
45
-
46
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
47
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
48
- assert torch.allclose(state, state_ref, rtol=rtol, atol=atol)
49
- assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)