Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
# Import the core logic from your "normal inference file"
|
| 6 |
+
from NoiseFilter.MaIR.inference_runner import MaIR_Upsampler
|
| 7 |
+
|
| 8 |
+
# --- Global model cache for performance ---
|
| 9 |
+
# This dictionary will store loaded models to avoid reloading on every API call.
|
| 10 |
+
model_cache = {}
|
| 11 |
+
|
| 12 |
+
def get_model(model_name):
|
| 13 |
+
"""Loads a model into the cache if it's not already there."""
|
| 14 |
+
if model_name not in model_cache:
|
| 15 |
+
print(f"Loading model {model_name} into cache...")
|
| 16 |
+
model_cache[model_name] = MaIR_Upsampler(model_name=model_name)
|
| 17 |
+
return model_cache[model_name]
|
| 18 |
+
|
| 19 |
+
# --- API Function ---
|
| 20 |
+
def inference_api(image, model_name):
|
| 21 |
+
"""
|
| 22 |
+
This is the function that the API will call.
|
| 23 |
+
It takes a NumPy array and a model name string as input.
|
| 24 |
+
"""
|
| 25 |
+
if image is None:
|
| 26 |
+
# Gradio handles this by not running, but good practice for raw API calls.
|
| 27 |
+
raise ValueError("No image provided.")
|
| 28 |
+
|
| 29 |
+
upsampler = get_model(model_name)
|
| 30 |
+
output_image = upsampler.process(image)
|
| 31 |
+
return output_image
|
| 32 |
+
|
| 33 |
+
# --- Create the Gradio Interface (for API generation) ---
|
| 34 |
+
# We define a minimal interface. The primary goal is API exposure.
|
| 35 |
+
interface = gr.Interface(
|
| 36 |
+
fn=inference_api,
|
| 37 |
+
inputs=[
|
| 38 |
+
gr.Image(type="numpy", label="Input Image"),
|
| 39 |
+
gr.Dropdown(
|
| 40 |
+
choices=['MaIR-SRx4', 'MaIR-SRx2', 'MaIR-CDN-s50'],
|
| 41 |
+
value='MaIR-SRx4',
|
| 42 |
+
label="Select Model"
|
| 43 |
+
),
|
| 44 |
+
],
|
| 45 |
+
outputs=gr.Image(type="numpy", label="Output Image"),
|
| 46 |
+
title="MaIR: Image Restoration API",
|
| 47 |
+
description="API for MaIR models. Use the '/api' endpoint for programmatic access."
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Launch the app. This will start the web server and create the API.
|
| 51 |
+
interface.launch()
|