Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import cv2 as cv | |
| from keras.models import load_model | |
| import tensorflow as tf | |
| from tensorflow.keras.preprocessing import image | |
| import matplotlib.pyplot as plt | |
| import os | |
| import streamlit as st | |
| from styling import footer | |
| st.cache(allow_output_mutation=True) | |
| st.title("TB Image Classifier") | |
| # | |
| gpu_devices = tf.config.experimental.list_physical_devices("GPU") | |
| for device in gpu_devices: | |
| tf.config.experimental.set_memory_growth(device, True) | |
| # loading model | |
| model_path = "./tb_model" | |
| model = load_model(model_path) | |
| # loading the imaage | |
| file = st.file_uploader( | |
| "Upload the image", | |
| type=["png", "jpg"], | |
| accept_multiple_files=False, | |
| key=None, | |
| help=None, | |
| on_change=None, | |
| args=None, | |
| kwargs=None, | |
| ) | |
| run = st.button( | |
| "Make Prediction", key=None, help=None, on_click=None, args=None, kwargs=None | |
| ) | |
| st.subheader("This app classifies an x-ray image if it has TB or not") | |
| # image laoder | |
| def load_image(img_path, img_size, show=False): | |
| img = image.load_img(img_path, target_size=img_size) | |
| img_tensor = image.img_to_array(img) | |
| img_tensor = np.expand_dims(img_tensor, axis=0) # expanding image tensor | |
| img_tensor = img_tensor / 255.0 # scaling the image_T | |
| if show: | |
| plt.imshow(img_tensor[0]) | |
| plt.axis("off") | |
| plt.show() | |
| return img_tensor | |
| img_size = (300, 300) | |
| img_path = "inference image from medscape.jpg" | |
| classes = ["Normal", "Tuberculosis"] | |
| if __name__ == "__main__": | |
| ## load img | |
| footer() | |
| if run == True: | |
| if file is not None: | |
| img = load_image(img_path, img_size) | |
| pred = model.predict(img) | |
| output = classes[round(pred[0][0])] | |
| st.subheader(f"The image is {output}") | |
| else: | |
| st.write("Please upload an image first") | |
| # st.image(file) | |