Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI | |
| from pydantic import BaseModel | |
| from typing import List | |
| from src.processor import * | |
| from sentence_transformers import SentenceTransformer | |
| app = FastAPI() | |
| class Input(BaseModel): | |
| text1 : List | |
| text2 : List | |
| model : str = "sentence-transformers/all-MiniLM-L6-v2" | |
| class Output(BaseModel): | |
| matrix : List | |
| def saoke_to_heatmap(payload: Input): | |
| saoke_spec = text_to_saoke(payload.text1) | |
| saoke_patent = text_to_saoke(payload.text2) | |
| try: | |
| model = SentenceTransformer(payload.model) | |
| except: | |
| model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
| embeddings1, embeddings2 = text_to_embeddings(saoke_spec, saoke_patent, model) | |
| matrix = embeddings_to_matrix(embeddings1, embeddings2) | |
| print({"matrix": matrix}) | |
| return {"matrix": matrix} | |
| def text_to_heatmap(payload: Input): | |
| try: | |
| model = SentenceTransformer(payload.model) | |
| except: | |
| model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
| embeddings1, embeddings2 = text_to_embeddings(payload.text1, payload.text2, model) | |
| matrix = embeddings_to_matrix(embeddings1, embeddings2) | |
| print({"matrix": matrix}) | |
| return {"matrix": matrix} |