Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	add test mode to huggingface UI
Browse filesadd test mode
Update config.py
add test mode
add test mode
- app.py +307 -207
- config.py +2 -2
- experiment_runner.py +0 -0
- geo_bot.py +165 -0
- mapcrunch_controller.py +10 -0
    	
        app.py
    CHANGED
    
    | @@ -2,6 +2,8 @@ import streamlit as st | |
| 2 | 
             
            import json
         | 
| 3 | 
             
            import os
         | 
| 4 | 
             
            import time
         | 
|  | |
|  | |
| 5 | 
             
            import re
         | 
| 6 | 
             
            from pathlib import Path
         | 
| 7 |  | 
| @@ -67,7 +69,7 @@ with st.sidebar: | |
| 67 | 
             
                st.header("Configuration")
         | 
| 68 |  | 
| 69 | 
             
                # Mode selection
         | 
| 70 | 
            -
                mode = st.radio("Mode", ["Dataset Mode", "Online Mode"], index=0)
         | 
| 71 |  | 
| 72 | 
             
                if mode == "Dataset Mode":
         | 
| 73 | 
             
                    # Get available datasets and ensure we have a valid default
         | 
| @@ -114,6 +116,43 @@ with st.sidebar: | |
| 114 | 
             
                    num_samples = st.slider(
         | 
| 115 | 
             
                        "Samples to Test", 1, len(golden_labels), min(3, len(golden_labels))
         | 
| 116 | 
             
                    )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 117 | 
             
                else:  # Online Mode
         | 
| 118 | 
             
                    st.info("Enter a URL to analyze a specific location")
         | 
| 119 |  | 
| @@ -211,221 +250,282 @@ with st.sidebar: | |
| 211 | 
             
                        help="Controls randomness in AI responses. 0.0 = deterministic, higher = more creative",
         | 
| 212 | 
             
                    )
         | 
| 213 |  | 
|  | |
| 214 | 
             
                start_button = st.button("π Start", type="primary")
         | 
| 215 |  | 
| 216 | 
             
            # Main Logic
         | 
| 217 | 
             
            if start_button:
         | 
| 218 | 
            -
                 | 
| 219 | 
            -
             | 
| 220 | 
            -
             | 
| 221 | 
            -
             | 
| 222 | 
            -
             | 
| 223 | 
            -
             | 
| 224 | 
            -
             | 
| 225 | 
            -
             | 
| 226 | 
            -
             | 
| 227 | 
            -
             | 
| 228 | 
            -
             | 
| 229 | 
            -
             | 
| 230 | 
            -
             | 
| 231 | 
            -
             | 
| 232 | 
            -
             | 
| 233 | 
            -
             | 
| 234 | 
            -
             | 
| 235 | 
            -
             | 
| 236 | 
            -
             | 
| 237 | 
            -
             | 
| 238 | 
            -
             | 
| 239 | 
            -
             | 
| 240 | 
            -
             | 
| 241 | 
            -
             | 
| 242 | 
            -
             | 
| 243 | 
            -
             | 
| 244 | 
            -
             | 
| 245 | 
            -
             | 
| 246 | 
            -
             | 
| 247 | 
            -
             | 
| 248 | 
            -
                         | 
| 249 | 
            -
                         | 
| 250 | 
            -
             | 
| 251 | 
            -
             | 
| 252 | 
            -
             | 
| 253 | 
            -
             | 
| 254 | 
            -
             | 
| 255 | 
            -
             | 
| 256 | 
            -
             | 
| 257 | 
            -
             | 
| 258 | 
            -
             | 
| 259 | 
            -
             | 
| 260 | 
            -
             | 
| 261 |  | 
| 262 | 
            -
             | 
| 263 | 
            -
             | 
| 264 | 
            -
             | 
| 265 | 
            -
             | 
| 266 | 
            -
             | 
| 267 | 
            -
             | 
| 268 | 
            -
             | 
| 269 | 
            -
             | 
| 270 | 
            -
             | 
| 271 | 
            -
             | 
| 272 | 
            -
             | 
| 273 | 
            -
                                        # Display screenshot
         | 
| 274 | 
            -
                                        st.image(
         | 
| 275 | 
            -
                                            step_info["screenshot_bytes"],
         | 
| 276 | 
            -
                                            caption=f"What AI sees - Step {step_num}",
         | 
| 277 | 
            -
                                            use_column_width=True,
         | 
| 278 | 
            -
                                        )
         | 
| 279 | 
            -
             | 
| 280 | 
            -
                                    with col2:
         | 
| 281 | 
            -
                                        # Show available actions
         | 
| 282 | 
            -
                                        st.write("**Available Actions:**")
         | 
| 283 | 
            -
                                        st.code(
         | 
| 284 | 
            -
                                            json.dumps(step_info["available_actions"], indent=2)
         | 
| 285 | 
            -
                                        )
         | 
| 286 | 
            -
             | 
| 287 | 
            -
                                        # Show history context - use the history from step_info
         | 
| 288 | 
            -
                                        current_history = step_info.get("history", [])
         | 
| 289 | 
            -
                                        history_text = bot.generate_history_text(current_history)
         | 
| 290 | 
            -
                                        st.write("**AI Context:**")
         | 
| 291 | 
            -
                                        st.text_area(
         | 
| 292 | 
            -
                                            "History",
         | 
| 293 | 
            -
                                            history_text,
         | 
| 294 | 
            -
                                            height=100,
         | 
| 295 | 
            -
                                            disabled=True,
         | 
| 296 | 
            -
                                            key=f"history_{i}_{step_num}",
         | 
| 297 | 
            -
                                        )
         | 
| 298 | 
            -
             | 
| 299 | 
            -
                                        # Show AI reasoning and action
         | 
| 300 | 
            -
                                        action = step_info.get("action_details", {}).get(
         | 
| 301 | 
            -
                                            "action", "N/A"
         | 
| 302 | 
            -
                                        )
         | 
| 303 | 
            -
             | 
| 304 | 
            -
                                        if step_info.get("is_final_step") and action != "GUESS":
         | 
| 305 | 
            -
                                            st.warning("Max steps reached. Forcing GUESS.")
         | 
| 306 | 
            -
             | 
| 307 | 
            -
                                        st.write("**AI Reasoning:**")
         | 
| 308 | 
            -
                                        st.info(step_info.get("reasoning", "N/A"))
         | 
| 309 | 
            -
                                        if step_info.get("debug_message") != "N/A":
         | 
| 310 | 
            -
                                            st.write("**AI Debug Message:**")
         | 
| 311 | 
            -
                                            st.code(step_info.get("debug_message"), language="json")
         | 
| 312 | 
            -
                                        st.write("**AI Action:**")
         | 
| 313 | 
            -
                                        if action == "GUESS":
         | 
| 314 | 
            -
                                            lat = step_info.get("action_details", {}).get("lat")
         | 
| 315 | 
            -
                                            lon = step_info.get("action_details", {}).get("lon")
         | 
| 316 | 
            -
                                            st.success(f"`{action}` - {lat:.4f}, {lon:.4f}")
         | 
| 317 | 
            -
                                        else:
         | 
| 318 | 
            -
                                            st.success(f"`{action}`")
         | 
| 319 | 
            -
             | 
| 320 | 
            -
                                        # Show decision details for debugging
         | 
| 321 | 
            -
                                        with st.expander("Decision Details"):
         | 
| 322 | 
            -
                                            decision_data = {
         | 
| 323 | 
            -
                                                "reasoning": step_info.get("reasoning"),
         | 
| 324 | 
            -
                                                "action_details": step_info.get("action_details"),
         | 
| 325 | 
            -
                                                "remaining_steps": step_info.get("remaining_steps"),
         | 
| 326 | 
            -
                                            }
         | 
| 327 | 
            -
                                            st.json(decision_data)
         | 
| 328 | 
            -
             | 
| 329 | 
            -
                            # Force UI refresh
         | 
| 330 | 
            -
                            time.sleep(0.5)  # Small delay to ensure UI updates are visible
         | 
| 331 | 
            -
             | 
| 332 | 
            -
                        # Run the agent loop with UI callback
         | 
| 333 | 
            -
                        try:
         | 
| 334 | 
            -
                            final_guess = bot.run_agent_loop(
         | 
| 335 | 
            -
                                max_steps=steps_per_sample, step_callback=ui_step_callback
         | 
| 336 | 
            -
                            )
         | 
| 337 | 
            -
                        except Exception as e:
         | 
| 338 | 
            -
                            st.error(f"Error during agent execution: {e}")
         | 
| 339 | 
            -
                            final_guess = None
         | 
| 340 | 
            -
             | 
| 341 | 
            -
                        # Sample Results
         | 
| 342 | 
            -
                        with sample_container:
         | 
| 343 | 
            -
                            st.subheader("Sample Result")
         | 
| 344 | 
            -
                            true_coords = {"lat": sample.get("lat"), "lng": sample.get("lng")}
         | 
| 345 | 
            -
                            distance_km = None
         | 
| 346 | 
            -
                            is_success = False
         | 
| 347 | 
            -
             | 
| 348 | 
            -
                            if final_guess:
         | 
| 349 | 
            -
                                distance_km = benchmark_helper.calculate_distance(
         | 
| 350 | 
            -
                                    true_coords, final_guess
         | 
| 351 | 
            -
                                )
         | 
| 352 | 
            -
                                if distance_km is not None:
         | 
| 353 | 
            -
                                    is_success = distance_km <= SUCCESS_THRESHOLD_KM
         | 
| 354 |  | 
| 355 | 
            -
             | 
| 356 | 
            -
             | 
| 357 | 
            -
             | 
| 358 | 
            -
             | 
| 359 | 
            -
             | 
| 360 | 
            -
             | 
| 361 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 362 | 
             
                                )
         | 
| 363 | 
            -
             | 
| 364 | 
            -
             | 
| 365 | 
            -
             | 
| 366 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 367 | 
             
                                )
         | 
| 368 | 
            -
                            else:
         | 
| 369 | 
            -
                                st.error("No final guess made")
         | 
| 370 | 
            -
             | 
| 371 | 
            -
                            all_results.append(
         | 
| 372 | 
            -
                                {
         | 
| 373 | 
            -
                                    "sample_id": sample.get("id"),
         | 
| 374 | 
            -
                                    "model": model_choice,
         | 
| 375 | 
            -
                                    "steps_taken": len(sample_steps_data),
         | 
| 376 | 
            -
                                    "max_steps": steps_per_sample,
         | 
| 377 | 
            -
                                    "temperature": temperature,
         | 
| 378 | 
            -
                                    "true_coordinates": true_coords,
         | 
| 379 | 
            -
                                    "predicted_coordinates": final_guess,
         | 
| 380 | 
            -
                                    "distance_km": distance_km,
         | 
| 381 | 
            -
                                    "success": is_success,
         | 
| 382 | 
            -
                                }
         | 
| 383 | 
            -
                            )
         | 
| 384 |  | 
| 385 | 
            -
             | 
| 386 | 
            -
             | 
| 387 | 
            -
             | 
| 388 | 
            -
             | 
| 389 | 
            -
             | 
| 390 | 
            -
             | 
| 391 | 
            -
             | 
| 392 | 
            -
             | 
| 393 | 
            -
             | 
| 394 | 
            -
             | 
| 395 | 
            -
             | 
| 396 | 
            -
             | 
| 397 | 
            -
             | 
| 398 | 
            -
             | 
| 399 | 
            -
             | 
| 400 | 
            -
             | 
| 401 | 
            -
             | 
| 402 | 
            -
             | 
| 403 | 
            -
             | 
| 404 | 
            -
             | 
| 405 | 
            -
             | 
| 406 | 
            -
             | 
| 407 | 
            -
             | 
| 408 | 
            -
             | 
| 409 | 
            -
             | 
| 410 | 
            -
             | 
| 411 | 
            -
             | 
| 412 | 
            -
             | 
| 413 | 
            -
             | 
| 414 | 
            -
             | 
| 415 | 
            -
             | 
| 416 | 
            -
             | 
| 417 | 
            -
             | 
| 418 | 
            -
             | 
| 419 | 
            -
             | 
| 420 | 
            -
             | 
| 421 | 
            -
             | 
| 422 | 
            -
             | 
| 423 | 
            -
             | 
| 424 | 
            -
             | 
| 425 | 
            -
             | 
| 426 | 
            -
             | 
| 427 | 
            -
             | 
| 428 | 
            -
             | 
| 429 |  | 
| 430 |  | 
| 431 | 
             
            def handle_tab_completion():
         | 
|  | |
| 2 | 
             
            import json
         | 
| 3 | 
             
            import os
         | 
| 4 | 
             
            import time
         | 
| 5 | 
            +
            import pandas as pd
         | 
| 6 | 
            +
            import altair as alt
         | 
| 7 | 
             
            import re
         | 
| 8 | 
             
            from pathlib import Path
         | 
| 9 |  | 
|  | |
| 69 | 
             
                st.header("Configuration")
         | 
| 70 |  | 
| 71 | 
             
                # Mode selection
         | 
| 72 | 
            +
                mode = st.radio("Mode", ["Dataset Mode", "Online Mode", "Test Mode"], index=0)
         | 
| 73 |  | 
| 74 | 
             
                if mode == "Dataset Mode":
         | 
| 75 | 
             
                    # Get available datasets and ensure we have a valid default
         | 
|  | |
| 116 | 
             
                    num_samples = st.slider(
         | 
| 117 | 
             
                        "Samples to Test", 1, len(golden_labels), min(3, len(golden_labels))
         | 
| 118 | 
             
                    )
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                elif mode == "Test Mode":
         | 
| 121 | 
            +
                    st.info("π¬ Multi-Model Benchmark Testing")
         | 
| 122 | 
            +
                    available_datasets = get_available_datasets()
         | 
| 123 | 
            +
                    dataset_choice = st.selectbox("Dataset", available_datasets, index=0)
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                    selected_models = st.multiselect(
         | 
| 126 | 
            +
                        "Select Models to Compare",
         | 
| 127 | 
            +
                        list(MODELS_CONFIG.keys()),
         | 
| 128 | 
            +
                        default=[DEFAULT_MODEL],
         | 
| 129 | 
            +
                    )
         | 
| 130 | 
            +
                    if not selected_models:
         | 
| 131 | 
            +
                        st.warning("Please select at least one model to run the test.")
         | 
| 132 | 
            +
                        st.stop()
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    steps_per_sample = st.slider("Max Steps", 1, 50, 10)
         | 
| 135 | 
            +
                    temperature = st.slider(
         | 
| 136 | 
            +
                        "Temperature",
         | 
| 137 | 
            +
                        0.0,
         | 
| 138 | 
            +
                        2.0,
         | 
| 139 | 
            +
                        DEFAULT_TEMPERATURE,
         | 
| 140 | 
            +
                        0.1,
         | 
| 141 | 
            +
                        help="Controls randomness in AI responses. 0.0 = deterministic, higher = more creative",
         | 
| 142 | 
            +
                    )
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                    # load dataset
         | 
| 145 | 
            +
                    data_paths = get_data_paths(dataset_choice)
         | 
| 146 | 
            +
                    try:
         | 
| 147 | 
            +
                        with open(data_paths["golden_labels"], "r") as f:
         | 
| 148 | 
            +
                            golden_labels = json.load(f).get("samples", [])
         | 
| 149 | 
            +
                        st.success(f"Dataset '{dataset_choice}' loaded with {len(golden_labels)} samples")
         | 
| 150 | 
            +
                    except Exception as e:
         | 
| 151 | 
            +
                        st.error(f"Error loading dataset '{dataset_choice}': {str(e)}")
         | 
| 152 | 
            +
                        st.stop()
         | 
| 153 | 
            +
                    num_samples = st.slider("Samples per Run", 1, len(golden_labels), min(10, len(golden_labels)))
         | 
| 154 | 
            +
                    runs_per_model = st.slider("Runs per Model", 1, 10, 5)
         | 
| 155 | 
            +
                    
         | 
| 156 | 
             
                else:  # Online Mode
         | 
| 157 | 
             
                    st.info("Enter a URL to analyze a specific location")
         | 
| 158 |  | 
|  | |
| 250 | 
             
                        help="Controls randomness in AI responses. 0.0 = deterministic, higher = more creative",
         | 
| 251 | 
             
                    )
         | 
| 252 |  | 
| 253 | 
            +
                # common start button
         | 
| 254 | 
             
                start_button = st.button("π Start", type="primary")
         | 
| 255 |  | 
| 256 | 
             
            # Main Logic
         | 
| 257 | 
             
            if start_button:
         | 
| 258 | 
            +
                if mode == "Test Mode":
         | 
| 259 | 
            +
                    benchmark_helper = MapGuesserBenchmark(dataset_name=dataset_choice)
         | 
| 260 | 
            +
                    summary_by_step = {}
         | 
| 261 | 
            +
                    progress_bar = st.progress(0)
         | 
| 262 | 
            +
                    for mi, model_name in enumerate(selected_models):
         | 
| 263 | 
            +
                        st.header(f"Model: {model_name}")
         | 
| 264 | 
            +
                        config = MODELS_CONFIG[model_name]
         | 
| 265 | 
            +
                        model_class = get_model_class(config["class"])
         | 
| 266 | 
            +
                        
         | 
| 267 | 
            +
                        successes_per_step = [0]*steps_per_sample
         | 
| 268 | 
            +
                        total_iterations = runs_per_model * num_samples
         | 
| 269 | 
            +
                        model_bar = st.progress(0, text=f"Running {model_name}")
         | 
| 270 | 
            +
                        iteration_counter = 0
         | 
| 271 | 
            +
                        for run_idx in range(runs_per_model):
         | 
| 272 | 
            +
                            with GeoBot(model=model_class, model_name=config["model_name"], headless=True, temperature=temperature) as bot:
         | 
| 273 | 
            +
                                for si, sample in enumerate(golden_labels[:num_samples]):
         | 
| 274 | 
            +
                                    if not bot.controller.load_location_from_data(sample):
         | 
| 275 | 
            +
                                        iteration_counter += 1
         | 
| 276 | 
            +
                                        model_bar.progress(iteration_counter/total_iterations)
         | 
| 277 | 
            +
                                        continue
         | 
| 278 | 
            +
                                    predictions = bot.test_run_agent_loop(max_steps=steps_per_sample)
         | 
| 279 | 
            +
                                    true_coords = {"lat": sample["lat"], "lng": sample["lng"]}
         | 
| 280 | 
            +
                                    for step_idx, pred in enumerate(predictions):
         | 
| 281 | 
            +
                                        if isinstance(pred, dict) and "lat" in pred:
         | 
| 282 | 
            +
                                            dist = benchmark_helper.calculate_distance(true_coords, (pred["lat"], pred["lon"]))
         | 
| 283 | 
            +
                                            if dist is not None and dist <= SUCCESS_THRESHOLD_KM:
         | 
| 284 | 
            +
                                                successes_per_step[step_idx] += 1
         | 
| 285 | 
            +
                                    iteration_counter += 1
         | 
| 286 | 
            +
                                    model_bar.progress(iteration_counter/total_iterations)
         | 
| 287 | 
            +
                        # calculate accuracy per step
         | 
| 288 | 
            +
                        acc_per_step = [s/(num_samples*runs_per_model) for s in successes_per_step]
         | 
| 289 | 
            +
                        summary_by_step[model_name] = acc_per_step
         | 
| 290 | 
            +
                        progress_bar.progress((mi+1)/len(selected_models))
         | 
| 291 | 
            +
                    # plot
         | 
| 292 | 
            +
                    st.subheader("Accuracy vs Steps")
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    # summary_by_step {model: [acc_step1, acc_step2, ...]}
         | 
| 295 | 
            +
                    df_wide = pd.DataFrame(summary_by_step)
         | 
| 296 | 
            +
                    df_long = (
         | 
| 297 | 
            +
                        df_wide
         | 
| 298 | 
            +
                        .reset_index(names="Step")      
         | 
| 299 | 
            +
                        .melt(id_vars="Step", var_name="Model", value_name="Accuracy")
         | 
| 300 | 
            +
                    )
         | 
| 301 |  | 
| 302 | 
            +
                    chart = (
         | 
| 303 | 
            +
                        alt.Chart(df_long)
         | 
| 304 | 
            +
                        .mark_line(point=True)
         | 
| 305 | 
            +
                        .encode(
         | 
| 306 | 
            +
                            x=alt.X("Step:O", title="Step #"),
         | 
| 307 | 
            +
                            y=alt.Y("Accuracy:Q", title="Accuracy", scale=alt.Scale(domain=[0, 1])),
         | 
| 308 | 
            +
                            color=alt.Color("Model:N", title="Model"),
         | 
| 309 | 
            +
                            tooltip=["Model:N", "Step:O", alt.Tooltip("Accuracy:Q", format=".2%")],
         | 
| 310 | 
            +
                        )
         | 
| 311 | 
            +
                        .properties(width=700, height=400)
         | 
| 312 | 
            +
                    )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 313 |  | 
| 314 | 
            +
                    st.altair_chart(chart, use_container_width=True)
         | 
| 315 | 
            +
                    st.stop()
         | 
| 316 | 
            +
                
         | 
| 317 | 
            +
                else:
         | 
| 318 | 
            +
                    test_samples = golden_labels[:num_samples]
         | 
| 319 | 
            +
                    config = MODELS_CONFIG[model_choice]
         | 
| 320 | 
            +
                    model_class = get_model_class(config["class"])
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    benchmark_helper = MapGuesserBenchmark(
         | 
| 323 | 
            +
                        dataset_name=dataset_choice if mode == "Dataset Mode" else "online"
         | 
| 324 | 
            +
                    )
         | 
| 325 | 
            +
                    all_results = []
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                    progress_bar = st.progress(0)
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    with GeoBot(
         | 
| 330 | 
            +
                        model=model_class,
         | 
| 331 | 
            +
                        model_name=config["model_name"],
         | 
| 332 | 
            +
                        headless=True,
         | 
| 333 | 
            +
                        temperature=temperature,
         | 
| 334 | 
            +
                    ) as bot:
         | 
| 335 | 
            +
                        for i, sample in enumerate(test_samples):
         | 
| 336 | 
            +
                            st.divider()
         | 
| 337 | 
            +
                            st.header(f"Sample {i + 1}/{num_samples}")
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                            if mode == "Online Mode":
         | 
| 340 | 
            +
                                # Load the MapCrunch URL directly
         | 
| 341 | 
            +
                                bot.controller.load_url(sample["url"])
         | 
| 342 | 
            +
                            else:
         | 
| 343 | 
            +
                                # Load from dataset as before
         | 
| 344 | 
            +
                                bot.controller.load_location_from_data(sample)
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                            bot.controller.setup_clean_environment()
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                            # Create containers for UI updates
         | 
| 349 | 
            +
                            sample_container = st.container()
         | 
| 350 | 
            +
             | 
| 351 | 
            +
                            # Initialize UI state for this sample
         | 
| 352 | 
            +
                            step_containers = {}
         | 
| 353 | 
            +
                            sample_steps_data = []
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                            def ui_step_callback(step_info):
         | 
| 356 | 
            +
                                """Callback function to update UI after each step"""
         | 
| 357 | 
            +
                                step_num = step_info["step_num"]
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                                # Store step data
         | 
| 360 | 
            +
                                sample_steps_data.append(step_info)
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                                with sample_container:
         | 
| 363 | 
            +
                                    # Create step container if it doesn't exist
         | 
| 364 | 
            +
                                    if step_num not in step_containers:
         | 
| 365 | 
            +
                                        step_containers[step_num] = st.container()
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                                    with step_containers[step_num]:
         | 
| 368 | 
            +
                                        st.subheader(f"Step {step_num}/{step_info['max_steps']}")
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                                        col1, col2 = st.columns([1, 2])
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                                        with col1:
         | 
| 373 | 
            +
                                            # Display screenshot
         | 
| 374 | 
            +
                                            st.image(
         | 
| 375 | 
            +
                                                step_info["screenshot_bytes"],
         | 
| 376 | 
            +
                                                caption=f"What AI sees - Step {step_num}",
         | 
| 377 | 
            +
                                                use_column_width=True,
         | 
| 378 | 
            +
                                            )
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                                        with col2:
         | 
| 381 | 
            +
                                            # Show available actions
         | 
| 382 | 
            +
                                            st.write("**Available Actions:**")
         | 
| 383 | 
            +
                                            st.code(
         | 
| 384 | 
            +
                                                json.dumps(step_info["available_actions"], indent=2)
         | 
| 385 | 
            +
                                            )
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                                            # Show history context - use the history from step_info
         | 
| 388 | 
            +
                                            current_history = step_info.get("history", [])
         | 
| 389 | 
            +
                                            history_text = bot.generate_history_text(current_history)
         | 
| 390 | 
            +
                                            st.write("**AI Context:**")
         | 
| 391 | 
            +
                                            st.text_area(
         | 
| 392 | 
            +
                                                "History",
         | 
| 393 | 
            +
                                                history_text,
         | 
| 394 | 
            +
                                                height=100,
         | 
| 395 | 
            +
                                                disabled=True,
         | 
| 396 | 
            +
                                                key=f"history_{i}_{step_num}",
         | 
| 397 | 
            +
                                            )
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                                            # Show AI reasoning and action
         | 
| 400 | 
            +
                                            action = step_info.get("action_details", {}).get(
         | 
| 401 | 
            +
                                                "action", "N/A"
         | 
| 402 | 
            +
                                            )
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                                            if step_info.get("is_final_step") and action != "GUESS":
         | 
| 405 | 
            +
                                                st.warning("Max steps reached. Forcing GUESS.")
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                                            st.write("**AI Reasoning:**")
         | 
| 408 | 
            +
                                            st.info(step_info.get("reasoning", "N/A"))
         | 
| 409 | 
            +
                                            if step_info.get("debug_message") != "N/A":
         | 
| 410 | 
            +
                                                st.write("**AI Debug Message:**")
         | 
| 411 | 
            +
                                                st.code(step_info.get("debug_message"), language="json")
         | 
| 412 | 
            +
                                            st.write("**AI Action:**")
         | 
| 413 | 
            +
                                            if action == "GUESS":
         | 
| 414 | 
            +
                                                lat = step_info.get("action_details", {}).get("lat")
         | 
| 415 | 
            +
                                                lon = step_info.get("action_details", {}).get("lon")
         | 
| 416 | 
            +
                                                st.success(f"`{action}` - {lat:.4f}, {lon:.4f}")
         | 
| 417 | 
            +
                                            else:
         | 
| 418 | 
            +
                                                st.success(f"`{action}`")
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                                            # Show decision details for debugging
         | 
| 421 | 
            +
                                            with st.expander("Decision Details"):
         | 
| 422 | 
            +
                                                decision_data = {
         | 
| 423 | 
            +
                                                    "reasoning": step_info.get("reasoning"),
         | 
| 424 | 
            +
                                                    "action_details": step_info.get("action_details"),
         | 
| 425 | 
            +
                                                    "remaining_steps": step_info.get("remaining_steps"),
         | 
| 426 | 
            +
                                                }
         | 
| 427 | 
            +
                                                st.json(decision_data)
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                                # Force UI refresh
         | 
| 430 | 
            +
                                time.sleep(0.5)  # Small delay to ensure UI updates are visible
         | 
| 431 | 
            +
             | 
| 432 | 
            +
                            # Run the agent loop with UI callback
         | 
| 433 | 
            +
                            try:
         | 
| 434 | 
            +
                                final_guess = bot.run_agent_loop(
         | 
| 435 | 
            +
                                    max_steps=steps_per_sample, step_callback=ui_step_callback
         | 
| 436 | 
             
                                )
         | 
| 437 | 
            +
                            except Exception as e:
         | 
| 438 | 
            +
                                st.error(f"Error during agent execution: {e}")
         | 
| 439 | 
            +
                                final_guess = None
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                            # Sample Results
         | 
| 442 | 
            +
                            with sample_container:
         | 
| 443 | 
            +
                                st.subheader("Sample Result")
         | 
| 444 | 
            +
                                true_coords = {"lat": sample.get("lat"), "lng": sample.get("lng")}
         | 
| 445 | 
            +
                                distance_km = None
         | 
| 446 | 
            +
                                is_success = False
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                                if final_guess:
         | 
| 449 | 
            +
                                    distance_km = benchmark_helper.calculate_distance(
         | 
| 450 | 
            +
                                        true_coords, final_guess
         | 
| 451 | 
            +
                                    )
         | 
| 452 | 
            +
                                    if distance_km is not None:
         | 
| 453 | 
            +
                                        is_success = distance_km <= SUCCESS_THRESHOLD_KM
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                                    col1, col2, col3 = st.columns(3)
         | 
| 456 | 
            +
                                    col1.metric(
         | 
| 457 | 
            +
                                        "Final Guess", f"{final_guess[0]:.3f}, {final_guess[1]:.3f}"
         | 
| 458 | 
            +
                                    )
         | 
| 459 | 
            +
                                    col2.metric(
         | 
| 460 | 
            +
                                        "Ground Truth",
         | 
| 461 | 
            +
                                        f"{true_coords['lat']:.3f}, {true_coords['lng']:.3f}",
         | 
| 462 | 
            +
                                    )
         | 
| 463 | 
            +
                                    col3.metric(
         | 
| 464 | 
            +
                                        "Distance",
         | 
| 465 | 
            +
                                        f"{distance_km:.1f} km",
         | 
| 466 | 
            +
                                        delta="Success" if is_success else "Failed",
         | 
| 467 | 
            +
                                    )
         | 
| 468 | 
            +
                                else:
         | 
| 469 | 
            +
                                    st.error("No final guess made")
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                                all_results.append(
         | 
| 472 | 
            +
                                    {
         | 
| 473 | 
            +
                                        "sample_id": sample.get("id"),
         | 
| 474 | 
            +
                                        "model": model_choice,
         | 
| 475 | 
            +
                                        "steps_taken": len(sample_steps_data),
         | 
| 476 | 
            +
                                        "max_steps": steps_per_sample,
         | 
| 477 | 
            +
                                        "temperature": temperature,
         | 
| 478 | 
            +
                                        "true_coordinates": true_coords,
         | 
| 479 | 
            +
                                        "predicted_coordinates": final_guess,
         | 
| 480 | 
            +
                                        "distance_km": distance_km,
         | 
| 481 | 
            +
                                        "success": is_success,
         | 
| 482 | 
            +
                                    }
         | 
| 483 | 
             
                                )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 484 |  | 
| 485 | 
            +
                            progress_bar.progress((i + 1) / num_samples)
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                    # Final Summary
         | 
| 488 | 
            +
                    st.divider()
         | 
| 489 | 
            +
                    st.header("π Final Results")
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                    # Calculate summary stats
         | 
| 492 | 
            +
                    successes = [r for r in all_results if r["success"]]
         | 
| 493 | 
            +
                    success_rate = len(successes) / len(all_results) if all_results else 0
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                    valid_distances = [
         | 
| 496 | 
            +
                        r["distance_km"] for r in all_results if r["distance_km"] is not None
         | 
| 497 | 
            +
                    ]
         | 
| 498 | 
            +
                    avg_distance = sum(valid_distances) / len(valid_distances) if valid_distances else 0
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                    # Overall metrics
         | 
| 501 | 
            +
                    col1, col2, col3 = st.columns(3)
         | 
| 502 | 
            +
                    col1.metric("Success Rate", f"{success_rate * 100:.1f}%")
         | 
| 503 | 
            +
                    col2.metric("Average Distance", f"{avg_distance:.1f} km")
         | 
| 504 | 
            +
                    col3.metric("Total Samples", len(all_results))
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                    # Detailed results table
         | 
| 507 | 
            +
                    st.subheader("Detailed Results")
         | 
| 508 | 
            +
                    st.dataframe(all_results, use_container_width=True)
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                    # Success/failure breakdown
         | 
| 511 | 
            +
                    if successes:
         | 
| 512 | 
            +
                        st.subheader("β
 Successful Samples")
         | 
| 513 | 
            +
                        st.dataframe(successes, use_container_width=True)
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                    failures = [r for r in all_results if not r["success"]]
         | 
| 516 | 
            +
                    if failures:
         | 
| 517 | 
            +
                        st.subheader("β Failed Samples")
         | 
| 518 | 
            +
                        st.dataframe(failures, use_container_width=True)
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                    # Export functionality
         | 
| 521 | 
            +
                    if st.button("πΎ Export Results"):
         | 
| 522 | 
            +
                        results_json = json.dumps(all_results, indent=2)
         | 
| 523 | 
            +
                        st.download_button(
         | 
| 524 | 
            +
                            label="Download results.json",
         | 
| 525 | 
            +
                            data=results_json,
         | 
| 526 | 
            +
                            file_name=f"geo_results_{dataset_choice}_{model_choice}_{num_samples}samples.json",
         | 
| 527 | 
            +
                            mime="application/json",
         | 
| 528 | 
            +
                        )
         | 
| 529 |  | 
| 530 |  | 
| 531 | 
             
            def handle_tab_completion():
         | 
    	
        config.py
    CHANGED
    
    | @@ -38,12 +38,12 @@ DEFAULT_TEMPERATURE = 1.0 | |
| 38 | 
             
            # Model configurations
         | 
| 39 | 
             
            MODELS_CONFIG = {
         | 
| 40 | 
             
                "gpt-4o": {
         | 
| 41 | 
            -
                    "class": " | 
| 42 | 
             
                    "model_name": "gpt-4o",
         | 
| 43 | 
             
                    "description": "OpenAI GPT-4o",
         | 
| 44 | 
             
                },
         | 
| 45 | 
             
                "gpt-4o-mini": {
         | 
| 46 | 
            -
                    "class": " | 
| 47 | 
             
                    "model_name": "gpt-4o-mini",
         | 
| 48 | 
             
                    "description": "OpenAI GPT-4o Mini",
         | 
| 49 | 
             
                },
         | 
|  | |
| 38 | 
             
            # Model configurations
         | 
| 39 | 
             
            MODELS_CONFIG = {
         | 
| 40 | 
             
                "gpt-4o": {
         | 
| 41 | 
            +
                    "class": "OpenRouter",
         | 
| 42 | 
             
                    "model_name": "gpt-4o",
         | 
| 43 | 
             
                    "description": "OpenAI GPT-4o",
         | 
| 44 | 
             
                },
         | 
| 45 | 
             
                "gpt-4o-mini": {
         | 
| 46 | 
            +
                    "class": "OpenRouter",
         | 
| 47 | 
             
                    "model_name": "gpt-4o-mini",
         | 
| 48 | 
             
                    "description": "OpenAI GPT-4o Mini",
         | 
| 49 | 
             
                },
         | 
    	
        experiment_runner.py
    ADDED
    
    | 
            File without changes
         | 
    	
        geo_bot.py
    CHANGED
    
    | @@ -69,6 +69,72 @@ Your response MUST be a valid JSON object wrapped in ```json ... ```. | |
| 69 | 
             
            ```
         | 
| 70 | 
             
            """
         | 
| 71 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 72 | 
             
            BENCHMARK_PROMPT = """
         | 
| 73 | 
             
            Analyze the image and determine its geographic coordinates.
         | 
| 74 | 
             
            1.  Describe visual clues.
         | 
| @@ -255,6 +321,49 @@ class GeoBot: | |
| 255 |  | 
| 256 | 
             
                    return decision
         | 
| 257 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 258 | 
             
                def execute_action(self, action: str) -> bool:
         | 
| 259 | 
             
                    """
         | 
| 260 | 
             
                    Execute the given action using the controller.
         | 
| @@ -272,6 +381,62 @@ class GeoBot: | |
| 272 | 
             
                        self.controller.pan_view("right")
         | 
| 273 | 
             
                    return True
         | 
| 274 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 275 | 
             
                def run_agent_loop(
         | 
| 276 | 
             
                    self, max_steps: int = 10, step_callback=None
         | 
| 277 | 
             
                ) -> Optional[Tuple[float, float]]:
         | 
|  | |
| 69 | 
             
            ```
         | 
| 70 | 
             
            """
         | 
| 71 |  | 
| 72 | 
            +
            TEST_AGENT_PROMPT_TEMPLATE = """
         | 
| 73 | 
            +
            **Mission:** You are an expert geo-location agent. Your goal is to pinpoint our position based on the surroundings and your observation history.
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            **Current Status**
         | 
| 76 | 
            +
            β’ Actions You Can Take *this* turn: {available_actions}
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            ββββββββββββββββββββββββββββββββ
         | 
| 79 | 
            +
            **Core Principles**
         | 
| 80 | 
            +
             | 
| 81 | 
            +
            1.  **Observe β Orient β Act**  
         | 
| 82 | 
            +
                Start each turn with a structured three-part reasoning block:  
         | 
| 83 | 
            +
                **(1) Visual Clues β** plainly describe what you see (signs, text language, road lines, vegetation, building styles, vehicles, terrain, weather, etc.).  
         | 
| 84 | 
            +
                **(2) Potential Regions β** list the most plausible regions/countries those clues suggest.  
         | 
| 85 | 
            +
                **(3) Most Probable + Plan β** pick the single likeliest region and explain the next action (move/pan or guess).  
         | 
| 86 | 
            +
             | 
| 87 | 
            +
            2.  **Navigate with Labels:**  
         | 
| 88 | 
            +
                - `MOVE_FORWARD` follows the green **UP** arrow.  
         | 
| 89 | 
            +
                - `MOVE_BACKWARD` follows the red **DOWN** arrow.  
         | 
| 90 | 
            +
                - No arrow β you cannot move that way.
         | 
| 91 | 
            +
             | 
| 92 | 
            +
            3.  **Efficient Exploration:**  
         | 
| 93 | 
            +
                - **Pan Before You Move:** At fresh spots/intersections, use `PAN_LEFT` / `PAN_RIGHT` first.  
         | 
| 94 | 
            +
                - After ~2 or 3 fruitless moves in repetitive scenery, turn around.
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            4.  **Be Decisive:** A unique, definitive clue (full address, rare town name, etc.) β `GUESS` immediately.
         | 
| 97 | 
            +
             | 
| 98 | 
            +
            5.  **Final-Step Rule:** If **Remaining Steps = 1**, you **MUST** `GUESS` and you should carefully check the image and the surroundings.
         | 
| 99 | 
            +
             | 
| 100 | 
            +
            6.  **Always Predict:** On EVERY step, provide your current best estimate of the location, even if you're not ready to make a final guess.
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            ββββββββββββββββββββββββββββββββ
         | 
| 103 | 
            +
            **Context & Task:**
         | 
| 104 | 
            +
            Analyze your full journey history and current view, apply the Core Principles, and decide your next action in the required JSON format.
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            **Action History**
         | 
| 107 | 
            +
            {history_text}
         | 
| 108 | 
            +
             | 
| 109 | 
            +
            ββββββββββββββββββββββββββββββββ
         | 
| 110 | 
            +
            **JSON Output Format:**
         | 
| 111 | 
            +
            Your response MUST be a valid JSON object wrapped in ```json ... ```.
         | 
| 112 | 
            +
            {{
         | 
| 113 | 
            +
              "reasoning": "β¦",
         | 
| 114 | 
            +
              "current_prediction": {{
         | 
| 115 | 
            +
                "lat": <float>,
         | 
| 116 | 
            +
                "lon": <float>,
         | 
| 117 | 
            +
                "location_description": "Brief description of predicted location"
         | 
| 118 | 
            +
              }},
         | 
| 119 | 
            +
              "action_details": {{"action": action chosen from the available actions}}
         | 
| 120 | 
            +
            }}
         | 
| 121 | 
            +
            **Example **  
         | 
| 122 | 
            +
            ```json
         | 
| 123 | 
            +
            {{
         | 
| 124 | 
            +
              "reasoning": "(1) Visual Clues β I see left-side driving, eucalyptus trees, and a yellow speed-warning sign; the road markings are solid white. (2) Potential Regions β Southeastern Australia, Tasmania, or the North Island of New Zealand. (3) Most Probable + Plan β The scene most likely sits in a suburb of Hobart, Tasmania. I will PAN_LEFT to look for additional road signs that confirm this.",
         | 
| 125 | 
            +
              "current_prediction": {{
         | 
| 126 | 
            +
                "lat": -42.8806,
         | 
| 127 | 
            +
                "lon": 147.3250,
         | 
| 128 | 
            +
                "location_description": "Hobart suburb, Tasmania, Australia"
         | 
| 129 | 
            +
              }},
         | 
| 130 | 
            +
              "action_details": {{
         | 
| 131 | 
            +
                "action": "PAN_LEFT"
         | 
| 132 | 
            +
              }}
         | 
| 133 | 
            +
            }}
         | 
| 134 | 
            +
            ```
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            """
         | 
| 137 | 
            +
             | 
| 138 | 
             
            BENCHMARK_PROMPT = """
         | 
| 139 | 
             
            Analyze the image and determine its geographic coordinates.
         | 
| 140 | 
             
            1.  Describe visual clues.
         | 
|  | |
| 321 |  | 
| 322 | 
             
                    return decision
         | 
| 323 |  | 
| 324 | 
            +
                def execute_test_agent_step(
         | 
| 325 | 
            +
                    self,
         | 
| 326 | 
            +
                    history: List[Dict[str, Any]],
         | 
| 327 | 
            +
                    current_screenshot_b64: str,
         | 
| 328 | 
            +
                    available_actions: List[str],
         | 
| 329 | 
            +
                ) -> Optional[Dict[str, Any]]:
         | 
| 330 | 
            +
                    """
         | 
| 331 | 
            +
                    Execute a single agent step: generate prompt, get AI decision, return decision.
         | 
| 332 | 
            +
                    This is the core step logic extracted for reuse.
         | 
| 333 | 
            +
                    """
         | 
| 334 | 
            +
                    history_text = self.generate_history_text(history)
         | 
| 335 | 
            +
                    image_b64_for_prompt = self.get_history_images(history) + [
         | 
| 336 | 
            +
                        current_screenshot_b64
         | 
| 337 | 
            +
                    ]
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                    prompt = TEST_AGENT_PROMPT_TEMPLATE.format(
         | 
| 340 | 
            +
                        history_text=history_text,
         | 
| 341 | 
            +
                        available_actions=available_actions,
         | 
| 342 | 
            +
                    )
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                    try:
         | 
| 345 | 
            +
                        message = self._create_message_with_history(
         | 
| 346 | 
            +
                            prompt, image_b64_for_prompt[-1:]
         | 
| 347 | 
            +
                        )
         | 
| 348 | 
            +
                        response = self.model.invoke(message)
         | 
| 349 | 
            +
                        decision = self._parse_agent_response(response)
         | 
| 350 | 
            +
                    except Exception as e:
         | 
| 351 | 
            +
                        print(f"Error during model invocation: {e}")
         | 
| 352 | 
            +
                        decision = None
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                    if not decision:
         | 
| 355 | 
            +
                        print(
         | 
| 356 | 
            +
                            "Response parsing failed or model error. Using default recovery action: PAN_RIGHT."
         | 
| 357 | 
            +
                        )
         | 
| 358 | 
            +
                        decision = {
         | 
| 359 | 
            +
                            "reasoning": "Recovery due to parsing failure or model error.",
         | 
| 360 | 
            +
                            "action_details": {"action": "PAN_RIGHT"},
         | 
| 361 | 
            +
                            "current_prediction": "N/A",
         | 
| 362 | 
            +
                            "debug_message": f"{response.content.strip()}",
         | 
| 363 | 
            +
                        }
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                    return decision
         | 
| 366 | 
            +
                
         | 
| 367 | 
             
                def execute_action(self, action: str) -> bool:
         | 
| 368 | 
             
                    """
         | 
| 369 | 
             
                    Execute the given action using the controller.
         | 
|  | |
| 381 | 
             
                        self.controller.pan_view("right")
         | 
| 382 | 
             
                    return True
         | 
| 383 |  | 
| 384 | 
            +
                def test_run_agent_loop(self, max_steps: int = 10, step_callback=None) -> Optional[list[Tuple[float, float]]]:
         | 
| 385 | 
            +
                    history = self.init_history()
         | 
| 386 | 
            +
                    predictions = []
         | 
| 387 | 
            +
                    for step in range(max_steps, 0, -1):
         | 
| 388 | 
            +
                        # Setup and screenshot
         | 
| 389 | 
            +
                        self.controller.setup_clean_environment()
         | 
| 390 | 
            +
                        self.controller.label_arrows_on_screen()
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                        screenshot_bytes = self.controller.take_street_view_screenshot()
         | 
| 393 | 
            +
                        if not screenshot_bytes:
         | 
| 394 | 
            +
                            print("Failed to take screenshot. Ending agent loop.")
         | 
| 395 | 
            +
                            return None
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                        current_screenshot_b64 = self.pil_to_base64(
         | 
| 398 | 
            +
                            image=Image.open(BytesIO(screenshot_bytes))
         | 
| 399 | 
            +
                        )
         | 
| 400 | 
            +
                        available_actions = self.controller.get_test_available_actions()
         | 
| 401 | 
            +
                        print(f"Available actions: {available_actions}")
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                       
         | 
| 404 | 
            +
                        # Normal step execution
         | 
| 405 | 
            +
                        decision = self.execute_test_agent_step(
         | 
| 406 | 
            +
                            history, current_screenshot_b64, available_actions
         | 
| 407 | 
            +
                        )
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                        # Create step_info with current history BEFORE adding current step
         | 
| 410 | 
            +
                        # This shows the history up to (but not including) the current step
         | 
| 411 | 
            +
                        step_info = {
         | 
| 412 | 
            +
                            "max_steps": max_steps,
         | 
| 413 | 
            +
                            "remaining_steps": step,
         | 
| 414 | 
            +
                            "screenshot_bytes": screenshot_bytes,
         | 
| 415 | 
            +
                            "screenshot_b64": current_screenshot_b64,
         | 
| 416 | 
            +
                            "available_actions": available_actions,
         | 
| 417 | 
            +
                            "is_final_step": step == 1,
         | 
| 418 | 
            +
                            "reasoning": decision.get("reasoning", "N/A"),
         | 
| 419 | 
            +
                            "action_details": decision.get("action_details", {"action": "N/A"}),
         | 
| 420 | 
            +
                            "history": history.copy(),  # History up to current step (excluding current)
         | 
| 421 | 
            +
                            "debug_message": decision.get("debug_message", "N/A"),
         | 
| 422 | 
            +
                            "current_prediction": decision.get("current_prediction", "N/A"),
         | 
| 423 | 
            +
                        }
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                        action_details = decision.get("action_details", {})
         | 
| 426 | 
            +
                        action = action_details.get("action")
         | 
| 427 | 
            +
                        print(f"AI Reasoning: {decision.get('reasoning', 'N/A')}")
         | 
| 428 | 
            +
                        print(f"AI Current Prediction: {decision.get('current_prediction', 'N/A')}")
         | 
| 429 | 
            +
                        print(f"AI Action: {action}")
         | 
| 430 | 
            +
             | 
| 431 | 
            +
             | 
| 432 | 
            +
                        # Add step to history AFTER callback (so next iteration has this step in history)
         | 
| 433 | 
            +
                        self.add_step_to_history(history, current_screenshot_b64, decision)
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                        predictions.append(decision.get("current_prediction", "N/A"))
         | 
| 436 | 
            +
                        self.execute_action(action)
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                    return predictions
         | 
| 439 | 
            +
                
         | 
| 440 | 
             
                def run_agent_loop(
         | 
| 441 | 
             
                    self, max_steps: int = 10, step_callback=None
         | 
| 442 | 
             
                ) -> Optional[Tuple[float, float]]:
         | 
    	
        mapcrunch_controller.py
    CHANGED
    
    | @@ -214,6 +214,16 @@ class MapCrunchController: | |
| 214 | 
             
                        base_actions.extend(["MOVE_FORWARD", "MOVE_BACKWARD"])
         | 
| 215 | 
             
                    return base_actions
         | 
| 216 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 217 | 
             
                def get_current_address(self) -> Optional[str]:
         | 
| 218 | 
             
                    try:
         | 
| 219 | 
             
                        address_element = self.wait.until(
         | 
|  | |
| 214 | 
             
                        base_actions.extend(["MOVE_FORWARD", "MOVE_BACKWARD"])
         | 
| 215 | 
             
                    return base_actions
         | 
| 216 |  | 
| 217 | 
            +
                def get_test_available_actions(self) -> List[str]:
         | 
| 218 | 
            +
                    """
         | 
| 219 | 
            +
                    Checks for movement links via JavaScript.
         | 
| 220 | 
            +
                    """
         | 
| 221 | 
            +
                    base_actions = ["PAN_LEFT", "PAN_RIGHT"]
         | 
| 222 | 
            +
                    links = self.driver.execute_script("return window.panorama.getLinks();")
         | 
| 223 | 
            +
                    if links and len(links) > 0:
         | 
| 224 | 
            +
                        base_actions.extend(["MOVE_FORWARD", "MOVE_BACKWARD"])
         | 
| 225 | 
            +
                    return base_actions
         | 
| 226 | 
            +
                
         | 
| 227 | 
             
                def get_current_address(self) -> Optional[str]:
         | 
| 228 | 
             
                    try:
         | 
| 229 | 
             
                        address_element = self.wait.until(
         |