Commit
·
6f5b41f
1
Parent(s):
bd93788
refine data
Browse files- app.py +31 -495
- assets/gtbench_results.csv +0 -23
- assets/uc_result.csv +6 -0
app.py
CHANGED
|
@@ -1,501 +1,37 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
-
from src.display.about import (
|
| 4 |
-
CITATION_BUTTON_LABEL,
|
| 5 |
-
CITATION_BUTTON_TEXT,
|
| 6 |
-
EVALUATION_QUEUE_TEXT,
|
| 7 |
-
INTRODUCTION_TEXT,
|
| 8 |
-
LLM_BENCHMARKS_TEXT,
|
| 9 |
-
FAQ_TEXT,
|
| 10 |
-
TITLE,
|
| 11 |
-
)
|
| 12 |
-
from src.display.css_html_js import custom_css
|
| 13 |
-
from src.display.utils import (
|
| 14 |
-
BENCHMARK_COLS,
|
| 15 |
-
COLS,
|
| 16 |
-
EVAL_COLS,
|
| 17 |
-
EVAL_TYPES,
|
| 18 |
-
NUMERIC_INTERVALS,
|
| 19 |
-
TYPES,
|
| 20 |
-
AutoEvalColumn,
|
| 21 |
-
ModelType,
|
| 22 |
-
fields,
|
| 23 |
-
WeightType,
|
| 24 |
-
Precision
|
| 25 |
-
)
|
| 26 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
|
| 27 |
-
from PIL import Image
|
| 28 |
-
# from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 29 |
-
# from src.submission.submit import add_new_eval
|
| 30 |
-
# from src.tools.collections import update_collections
|
| 31 |
-
# from src.tools.plots import (
|
| 32 |
-
# create_metric_plot_obj,
|
| 33 |
-
# create_plot_df,
|
| 34 |
-
# create_scores_df,
|
| 35 |
-
# )
|
| 36 |
-
from dummydatagen import dummy_data_for_plot, create_metric_plot_obj_1, dummydf
|
| 37 |
-
import copy
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
def restart_space():
|
| 41 |
-
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def add_average_col(df):
|
| 45 |
-
|
| 46 |
-
always_here_cols = [
|
| 47 |
-
"Model", "Agent", "Opponent Model", "Opponent Agent"
|
| 48 |
-
]
|
| 49 |
-
desired_col = [i for i in list(df.columns) if i not in always_here_cols]
|
| 50 |
-
newdf = df[desired_col].mean(axis=1).round(3)
|
| 51 |
-
return newdf
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
gtbench_raw_data = dummydf()
|
| 55 |
-
gtbench_raw_data["Average"] = add_average_col(gtbench_raw_data)
|
| 56 |
-
|
| 57 |
-
column_to_move = "Average"
|
| 58 |
-
# Move the column to the desired index
|
| 59 |
-
gtbench_raw_data.insert(
|
| 60 |
-
4, column_to_move, gtbench_raw_data.pop(column_to_move))
|
| 61 |
-
|
| 62 |
-
models = list(set(gtbench_raw_data['Model']))
|
| 63 |
-
|
| 64 |
-
opponent_models = list(set(gtbench_raw_data['Opponent Model']))
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
agents = list(set(gtbench_raw_data['Agent']))
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
opponent_agents = list(set(gtbench_raw_data['Opponent Agent']))
|
| 71 |
-
|
| 72 |
-
# Searching and filtering
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def update_table(
|
| 76 |
-
hidden_df: pd.DataFrame,
|
| 77 |
-
columns: list,
|
| 78 |
-
model1: list,
|
| 79 |
-
model2: list,
|
| 80 |
-
agent1: list,
|
| 81 |
-
agent2: list
|
| 82 |
-
):
|
| 83 |
-
|
| 84 |
-
filtered_df = select_columns(hidden_df, columns)
|
| 85 |
-
|
| 86 |
-
filtered_df = filter_model1(filtered_df, model1)
|
| 87 |
-
filtered_df = filter_model2(filtered_df, model2)
|
| 88 |
-
filtered_df = filter_agent1(filtered_df, agent1)
|
| 89 |
-
filtered_df = filter_agent2(filtered_df, agent2)
|
| 90 |
-
|
| 91 |
-
return filtered_df
|
| 92 |
-
|
| 93 |
-
# triggered only once at startup => read query parameter if it exists
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
def load_query(request: gr.Request):
|
| 97 |
-
query = request.query_params.get("query") or ""
|
| 98 |
-
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 102 |
-
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 106 |
-
always_here_cols = [
|
| 107 |
-
"Model", "Agent", "Opponent Model", "Opponent Agent"
|
| 108 |
-
]
|
| 109 |
-
# We use COLS to maintain sorting
|
| 110 |
-
all_columns = games
|
| 111 |
-
|
| 112 |
-
if len(columns) == 0:
|
| 113 |
-
filtered_df = df[
|
| 114 |
-
always_here_cols +
|
| 115 |
-
[c for c in all_columns if c in df.columns]
|
| 116 |
-
]
|
| 117 |
-
filtered_df["Average"] = add_average_col(filtered_df)
|
| 118 |
-
column_to_move = "Average"
|
| 119 |
-
current_index = filtered_df.columns.get_loc(column_to_move)
|
| 120 |
-
|
| 121 |
-
# Move the column to the desired index
|
| 122 |
-
filtered_df.insert(4, column_to_move, filtered_df.pop(column_to_move))
|
| 123 |
-
return filtered_df
|
| 124 |
-
|
| 125 |
-
filtered_df = df[
|
| 126 |
-
always_here_cols +
|
| 127 |
-
[c for c in all_columns if c in df.columns and c in columns]
|
| 128 |
-
]
|
| 129 |
-
if "Average" in columns:
|
| 130 |
-
filtered_df["Average"] = add_average_col(filtered_df)
|
| 131 |
-
# Get the current index of the column
|
| 132 |
-
column_to_move = "Average"
|
| 133 |
-
current_index = filtered_df.columns.get_loc(column_to_move)
|
| 134 |
-
|
| 135 |
-
# Move the column to the desired index
|
| 136 |
-
filtered_df.insert(4, column_to_move, filtered_df.pop(column_to_move))
|
| 137 |
-
else:
|
| 138 |
-
if "Average" in filtered_df.columns:
|
| 139 |
-
# Remove the column
|
| 140 |
-
filtered_df = filtered_df.drop(columns=["Average"])
|
| 141 |
-
|
| 142 |
-
return filtered_df
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
def filter_model1(
|
| 146 |
-
df: pd.DataFrame, model_query: list
|
| 147 |
-
) -> pd.DataFrame:
|
| 148 |
-
# Show all models
|
| 149 |
-
if len(model_query) == 0:
|
| 150 |
-
return df
|
| 151 |
-
filtered_df = df
|
| 152 |
-
|
| 153 |
-
filtered_df = filtered_df[filtered_df["Model"].isin(
|
| 154 |
-
model_query)]
|
| 155 |
-
return filtered_df
|
| 156 |
-
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
) -> pd.DataFrame:
|
| 174 |
-
# Show all models
|
| 175 |
-
if len(agent_query) == 0:
|
| 176 |
-
return df
|
| 177 |
-
filtered_df = df
|
| 178 |
-
|
| 179 |
-
filtered_df = filtered_df[filtered_df["Agent"].isin(
|
| 180 |
-
agent_query)]
|
| 181 |
return filtered_df
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
) -> pd.DataFrame:
|
| 187 |
-
# Show all models
|
| 188 |
-
if len(agent_query) == 0:
|
| 189 |
-
return df
|
| 190 |
-
filtered_df = df
|
| 191 |
-
|
| 192 |
-
filtered_df = filtered_df[filtered_df["Opponent Agent"].isin(
|
| 193 |
-
agent_query)]
|
| 194 |
-
return filtered_df
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
# leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], False, False)
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
class LLM_Model:
|
| 201 |
-
def __init__(self, t_value, model_value, average_value, arc_value, hellaSwag_value, mmlu_value) -> None:
|
| 202 |
-
self.t = t_value
|
| 203 |
-
self.model = model_value
|
| 204 |
-
self.average = average_value
|
| 205 |
-
self.arc = arc_value
|
| 206 |
-
self.hellaSwag = hellaSwag_value
|
| 207 |
-
self.mmlu = mmlu_value
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
games = ["Breakthrough", "Connect Four", "Blind Auction", "Kuhn Poker",
|
| 211 |
-
"Liar's Dice", "Negotiation", "Nim", "Pig", "Iterated Prisoner's Dilemma", "Tic-Tac-Toe"]
|
| 212 |
-
|
| 213 |
-
# models = ["gpt-35-turbo-1106", "gpt-4", "Llama-2-70b-chat-hf", "CodeLlama-34b-Instruct-hf",
|
| 214 |
-
# "CodeLlama-70b-Instruct-hf", "Mistral-7B-Instruct-v01", "Mistral-7B-OpenOrca"]
|
| 215 |
-
|
| 216 |
-
# agents = ["Prompt Agent", "CoT Agent", "SC-CoT Agent",
|
| 217 |
-
# "ToT Agent", "MCTS", "Random", "TitforTat"]
|
| 218 |
-
|
| 219 |
-
demo = gr.Blocks(css=custom_css)
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
def load_image(image_path):
|
| 223 |
-
image = Image.open(image_path)
|
| 224 |
-
return image
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
with demo:
|
| 228 |
-
with gr.Row():
|
| 229 |
-
gr.Image("./assets/logo.png", height="200px", width="200px", scale=0.1,
|
| 230 |
-
show_download_button=False, container=False)
|
| 231 |
-
gr.HTML(TITLE, elem_id="title")
|
| 232 |
-
|
| 233 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 234 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 235 |
-
with gr.TabItem("🏅 UnlearnCanvas Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 236 |
-
with gr.Row():
|
| 237 |
-
with gr.Column():
|
| 238 |
-
with gr.Row():
|
| 239 |
-
|
| 240 |
-
shown_columns = gr.CheckboxGroup(
|
| 241 |
-
choices=[
|
| 242 |
-
'Average'
|
| 243 |
-
]+games,
|
| 244 |
-
label="Select columns to show",
|
| 245 |
-
elem_id="column-select",
|
| 246 |
-
interactive=True,
|
| 247 |
-
)
|
| 248 |
-
with gr.Column(min_width=320):
|
| 249 |
-
# with gr.Box(elem_id="box-filter"):
|
| 250 |
-
model1_column = gr.CheckboxGroup(
|
| 251 |
-
label="Model",
|
| 252 |
-
choices=models,
|
| 253 |
-
interactive=True,
|
| 254 |
-
elem_id="filter-columns-type",
|
| 255 |
-
)
|
| 256 |
-
|
| 257 |
-
agent1_column = gr.CheckboxGroup(
|
| 258 |
-
label="Agents",
|
| 259 |
-
choices=agents,
|
| 260 |
-
interactive=True,
|
| 261 |
-
elem_id="filter-columns-precision",
|
| 262 |
-
)
|
| 263 |
-
|
| 264 |
-
model2_column = gr.CheckboxGroup(
|
| 265 |
-
label="Opponent Model",
|
| 266 |
-
choices=opponent_models,
|
| 267 |
-
interactive=True,
|
| 268 |
-
elem_id="filter-columns-type",
|
| 269 |
-
)
|
| 270 |
-
agent2_column = gr.CheckboxGroup(
|
| 271 |
-
label="Opponent Agents",
|
| 272 |
-
choices=opponent_agents,
|
| 273 |
-
interactive=True,
|
| 274 |
-
elem_id="filter-columns-precision",
|
| 275 |
-
)
|
| 276 |
-
# filter_columns_size = gr.CheckboxGroup(
|
| 277 |
-
# label="Model sizes (in billions of parameters)",
|
| 278 |
-
# choices=[f'NUMERIC_INTERVALS{i}' for i in range(0, 5)],
|
| 279 |
-
# value=[f'NUMERIC_INTERVALS{i}' for i in range(0, 5)],
|
| 280 |
-
# interactive=True,
|
| 281 |
-
# elem_id="filter-columns-size",
|
| 282 |
-
# )
|
| 283 |
-
|
| 284 |
-
leaderboard_table = gr.components.Dataframe(
|
| 285 |
-
value=gtbench_raw_data,
|
| 286 |
-
elem_id="leaderboard-table",
|
| 287 |
-
interactive=False,
|
| 288 |
-
visible=True,
|
| 289 |
-
# column_widths=["2%", "33%"]
|
| 290 |
-
)
|
| 291 |
-
|
| 292 |
-
game_bench_df_for_search = gr.components.Dataframe(
|
| 293 |
-
value=gtbench_raw_data,
|
| 294 |
-
elem_id="leaderboard-table",
|
| 295 |
-
interactive=False,
|
| 296 |
-
visible=False,
|
| 297 |
-
# column_widths=["2%", "33%"]
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 301 |
-
# hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 302 |
-
# value=[],
|
| 303 |
-
# headers=COLS,
|
| 304 |
-
# datatype=TYPES,
|
| 305 |
-
# visible=False,
|
| 306 |
-
# )
|
| 307 |
-
# search_bar.submit(
|
| 308 |
-
# update_table,
|
| 309 |
-
# [
|
| 310 |
-
# # hidden_leaderboard_table_for_search,
|
| 311 |
-
# # shown_columns,
|
| 312 |
-
# # filter_columns_type,
|
| 313 |
-
# # filter_columns_precision,
|
| 314 |
-
# # filter_columns_size,
|
| 315 |
-
# # deleted_models_visibility,
|
| 316 |
-
# # flagged_models_visibility,
|
| 317 |
-
# # search_bar,
|
| 318 |
-
# ],
|
| 319 |
-
# leaderboard_table,
|
| 320 |
-
# )
|
| 321 |
-
|
| 322 |
-
# # Define a hidden component that will trigger a reload only if a query parameter has be set
|
| 323 |
-
# hidden_search_bar = gr.Textbox(value="", visible=False)
|
| 324 |
-
# hidden_search_bar.change(
|
| 325 |
-
# update_table,
|
| 326 |
-
# [
|
| 327 |
-
# hidden_leaderboard_table_for_search,
|
| 328 |
-
# shown_columns,
|
| 329 |
-
# filter_columns_type,
|
| 330 |
-
# filter_columns_precision,
|
| 331 |
-
# filter_columns_size,
|
| 332 |
-
# deleted_models_visibility,
|
| 333 |
-
# flagged_models_visibility,
|
| 334 |
-
# search_bar,
|
| 335 |
-
# ],
|
| 336 |
-
# leaderboard_table,
|
| 337 |
-
# )
|
| 338 |
-
# # Check query parameter once at startup and update search bar + hidden component
|
| 339 |
-
# demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
|
| 340 |
-
|
| 341 |
-
for selector in [shown_columns, model1_column, model2_column, agent1_column, agent2_column]:
|
| 342 |
-
selector.change(
|
| 343 |
-
update_table,
|
| 344 |
-
[
|
| 345 |
-
game_bench_df_for_search,
|
| 346 |
-
shown_columns,
|
| 347 |
-
model1_column,
|
| 348 |
-
model2_column,
|
| 349 |
-
agent1_column,
|
| 350 |
-
agent2_column
|
| 351 |
-
# filter_columns_precision,
|
| 352 |
-
# None, # filter_columns_size,
|
| 353 |
-
# None, # deleted_models_visibility,
|
| 354 |
-
# None, # flagged_models_visibility,
|
| 355 |
-
# None, # search_bar,
|
| 356 |
-
],
|
| 357 |
-
leaderboard_table,
|
| 358 |
-
queue=True,
|
| 359 |
-
)
|
| 360 |
-
|
| 361 |
-
# with gr.TabItem("📈 Metrics through time", elem_id="llm-benchmark-tab-table", id=4):
|
| 362 |
-
# with gr.Row():
|
| 363 |
-
# with gr.Column():
|
| 364 |
-
# chart = create_metric_plot_obj_1(
|
| 365 |
-
# dummy_data_for_plot(
|
| 366 |
-
# ["Metric1", "Metric2", 'Metric3']),
|
| 367 |
-
# ["Metric1", "Metric2", "Metric3"],
|
| 368 |
-
# title="Average of Top Scores and Human Baseline Over Time (from last update)",
|
| 369 |
-
# )
|
| 370 |
-
# gr.Plot(value=chart, min_width=500)
|
| 371 |
-
|
| 372 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 373 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 374 |
-
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
|
| 375 |
-
|
| 376 |
-
'''
|
| 377 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 378 |
-
with gr.Column():
|
| 379 |
-
with gr.Row():
|
| 380 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT,
|
| 381 |
-
elem_classes="markdown-text")
|
| 382 |
-
|
| 383 |
-
with gr.Column():
|
| 384 |
-
with gr.Accordion(
|
| 385 |
-
f"✅ Finished Evaluations ({9})",
|
| 386 |
-
open=False,
|
| 387 |
-
):
|
| 388 |
-
with gr.Row():
|
| 389 |
-
finished_eval_table = gr.components.Dataframe(
|
| 390 |
-
value=None,
|
| 391 |
-
headers=EVAL_COLS,
|
| 392 |
-
datatype=EVAL_TYPES,
|
| 393 |
-
row_count=5,
|
| 394 |
-
)
|
| 395 |
-
with gr.Accordion(
|
| 396 |
-
f"🔄 Running Evaluation Queue ({5})",
|
| 397 |
-
open=False,
|
| 398 |
-
):
|
| 399 |
-
with gr.Row():
|
| 400 |
-
running_eval_table = gr.components.Dataframe(
|
| 401 |
-
value=None,
|
| 402 |
-
headers=EVAL_COLS,
|
| 403 |
-
datatype=EVAL_TYPES,
|
| 404 |
-
row_count=5,
|
| 405 |
-
)
|
| 406 |
-
|
| 407 |
-
with gr.Accordion(
|
| 408 |
-
f"⏳ Pending Evaluation Queue ({7})",
|
| 409 |
-
open=False,
|
| 410 |
-
):
|
| 411 |
-
with gr.Row():
|
| 412 |
-
pending_eval_table = gr.components.Dataframe(
|
| 413 |
-
value=None,
|
| 414 |
-
headers=EVAL_COLS,
|
| 415 |
-
datatype=EVAL_TYPES,
|
| 416 |
-
row_count=5,
|
| 417 |
-
)
|
| 418 |
-
with gr.Row():
|
| 419 |
-
gr.Markdown("# ✉️✨ Submit your Agent here!",
|
| 420 |
-
elem_classes="markdown-text")
|
| 421 |
-
|
| 422 |
-
with gr.Row():
|
| 423 |
-
with gr.Column():
|
| 424 |
-
model_name_textbox = gr.Textbox(label="Agent name")
|
| 425 |
-
# revision_name_textbox = gr.Textbox(
|
| 426 |
-
# label="Revision commit", placeholder="main")
|
| 427 |
-
# private = gr.Checkbox(
|
| 428 |
-
# False, label="Private", visible=not IS_PUBLIC)
|
| 429 |
-
model_type = gr.Dropdown(
|
| 430 |
-
choices=[t.to_str(" : ")
|
| 431 |
-
for t in ModelType if t != ModelType.Unknown],
|
| 432 |
-
label="Agent type",
|
| 433 |
-
multiselect=False,
|
| 434 |
-
value=ModelType.FT.to_str(" : "),
|
| 435 |
-
interactive=True,
|
| 436 |
-
)
|
| 437 |
-
|
| 438 |
-
# with gr.Column():
|
| 439 |
-
# precision = gr.Dropdown(
|
| 440 |
-
# choices=[i.value.name for i in Precision if i !=
|
| 441 |
-
# Precision.Unknown],
|
| 442 |
-
# label="Precision",
|
| 443 |
-
# multiselect=False,
|
| 444 |
-
# value="float16",
|
| 445 |
-
# interactive=True,
|
| 446 |
-
# )
|
| 447 |
-
# weight_type = gr.Dropdown(
|
| 448 |
-
# choices=[i.value.name for i in WeightType],
|
| 449 |
-
# label="Weights type",
|
| 450 |
-
# multiselect=False,
|
| 451 |
-
# value="Original",
|
| 452 |
-
# interactive=True,
|
| 453 |
-
# )
|
| 454 |
-
# base_model_name_textbox = gr.Textbox(
|
| 455 |
-
# label="Base model (for delta or adapter weights)")
|
| 456 |
-
|
| 457 |
-
submit_button = gr.Button("Submit Eval")
|
| 458 |
-
submission_result = gr.Markdown()
|
| 459 |
-
# submit_button.click(
|
| 460 |
-
# add_new_eval,
|
| 461 |
-
# [
|
| 462 |
-
# model_name_textbox,
|
| 463 |
-
# base_model_name_textbox,
|
| 464 |
-
# revision_name_textbox,
|
| 465 |
-
# precision,
|
| 466 |
-
# private,
|
| 467 |
-
# weight_type,
|
| 468 |
-
# model_type,
|
| 469 |
-
# ],
|
| 470 |
-
# submission_result,
|
| 471 |
-
# )
|
| 472 |
-
|
| 473 |
-
'''
|
| 474 |
-
with gr.Row():
|
| 475 |
-
with gr.Accordion("📙 Citation", open=False):
|
| 476 |
-
citation_button = gr.Textbox(
|
| 477 |
-
value=CITATION_BUTTON_TEXT,
|
| 478 |
-
label=CITATION_BUTTON_LABEL,
|
| 479 |
-
lines=20,
|
| 480 |
-
elem_id="citation-button",
|
| 481 |
-
show_copy_button=True,
|
| 482 |
-
)
|
| 483 |
-
|
| 484 |
-
# scheduler = BackgroundScheduler()
|
| 485 |
-
# scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 486 |
-
# scheduler.start()
|
| 487 |
-
demo.launch()
|
| 488 |
-
# Both launches the space and its CI
|
| 489 |
-
# configure_space_ci(
|
| 490 |
-
# demo.queue(default_concurrency_limit=40),
|
| 491 |
-
# trusted_authors=[], # add manually trusted authors
|
| 492 |
-
# private="True", # ephemeral spaces will have same visibility as the main space. Otherwise, set to `True` or `False` explicitly.
|
| 493 |
-
# variables={}, # We overwrite HF_HOME as tmp CI spaces will have no cache
|
| 494 |
-
# secrets=["HF_TOKEN", "H4_TOKEN"], # which secret do I want to copy from the main space? Can be a `List[str]`."HF_TOKEN", "H4_TOKEN"
|
| 495 |
-
# hardware=None, # "cpu-basic" by default. Otherwise set to "auto" to have same hardware as the main space or any valid string value.
|
| 496 |
-
# storage=None, # no storage by default. Otherwise set to "auto" to have same storage as the main space or any valid string value.
|
| 497 |
-
# ).launch()
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
# notes: opponent model , opponent agent
|
| 501 |
-
# column is games
|
|
|
|
| 1 |
+
|
| 2 |
import gradio as gr
|
| 3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
# Load the uc_result.csv file
|
| 6 |
+
uc_result_df = pd.read_csv('uc_result.csv')
|
| 7 |
+
|
| 8 |
+
# Convert percentage columns to float for sorting
|
| 9 |
+
percentage_columns = [col for col in uc_result_df.columns if uc_result_df[col].dtype == 'object' and '%' in uc_result_df[col].iloc[0]]
|
| 10 |
+
for col in percentage_columns:
|
| 11 |
+
uc_result_df[col] = uc_result_df[col].str.rstrip('%').astype('float') / 100
|
| 12 |
+
|
| 13 |
+
# Define a function to filter and sort the dataframe
|
| 14 |
+
def filter_and_sort(method=None, sort_by=None, ascending=True):
|
| 15 |
+
filtered_df = uc_result_df
|
| 16 |
+
if method:
|
| 17 |
+
filtered_df = filtered_df[filtered_df['Method'].str.contains(method)]
|
| 18 |
+
if sort_by:
|
| 19 |
+
filtered_df = filtered_df.sort_values(by=sort_by, ascending=ascending)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
return filtered_df
|
| 21 |
|
| 22 |
+
# Create Gradio interface components
|
| 23 |
+
method_input = gr.inputs.Textbox(label="Filter by Method", placeholder="Enter method name...")
|
| 24 |
+
sort_by_dropdown = gr.inputs.Dropdown(label="Sort by", choices=uc_result_df.columns.tolist(), default=None)
|
| 25 |
+
ascending_checkbox = gr.inputs.Checkbox(label="Ascending Order", value=True)
|
| 26 |
+
|
| 27 |
+
# Create a Gradio interface to display the data
|
| 28 |
+
iface = gr.Interface(
|
| 29 |
+
fn=filter_and_sort,
|
| 30 |
+
inputs=[method_input, sort_by_dropdown, ascending_checkbox],
|
| 31 |
+
outputs=gr.outputs.DataFrame(type="pandas"),
|
| 32 |
+
title="Enhanced UC Results Display",
|
| 33 |
+
description="This interface allows filtering and sorting of the results from uc_result.csv"
|
| 34 |
+
)
|
| 35 |
|
| 36 |
+
if __name__ == "__main__":
|
| 37 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assets/gtbench_results.csv
DELETED
|
@@ -1,23 +0,0 @@
|
|
| 1 |
-
Model,Agent,Opponent Model,Opponent Agent,Tic-Tac-Toe,Connect Four,Breakthrough,Liar's Dice,Blind Auction,Negotiation,Kuhn Poker,Nim,Pig,Iterated Prisoner's Dilemma,
|
| 2 |
-
GPT-3.5-turbo,Prompt,GPT-3.5-turbo-1106,prompt agent,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
|
| 3 |
-
GPT-4,Prompt,GPT-3.5-turbo-1106,prompt agent,-0.111,0.080,0.320,0.800,0.040,-0.281,0.400,0.080,-0.040,0.004,0.129
|
| 4 |
-
GPT-4,CoT,GPT-3.5-turbo-1106,prompt agent,-0.022,-0.080,0.560,0.240,0.069,0.135,0.440,0.040,0.040,-0.160,0.126
|
| 5 |
-
GPT-3.5-turbo,CoT,GPT-3.5-turbo-1106,prompt agent,0.277,-0.320,-0.120,0.440,0.115,-0.207,0.120,-0.040,-0.160,0.126,0.023
|
| 6 |
-
GPT-3.5-turbo,SC-CoT,GPT-3.5-turbo-1106,prompt agent,0.409,-0.040,-0.160,0.520,-0.120,-0.315,-0.080,0.000,-0.080,-0.155,-0.002
|
| 7 |
-
GPT-3.5-turbo,ToT,GPT-3.5-turbo-1106,prompt agent,-0.045,0.240,0.160,0.000,-0.120,0.183,0.000,0.120,-0.400,-0.191,-0.005
|
| 8 |
-
Codellama-34b-instruct,Prompt,GPT-3.5-turbo-1106,prompt agent,0.333,-0.100,-0.800,-0.400,-0.250,0.216,-0.160,0.360,0.120,0.600,-0.008
|
| 9 |
-
Llama-2-70b-chat,SC-CoT,GPT-3.5-turbo-1106,prompt agent,-0.469,-0.160,-0.680,0.160,-0.040,0.052,0.120,0.040,0.040,0.296,-0.064
|
| 10 |
-
Codellama-34b-instruct,CoT,GPT-3.5-turbo-1106,prompt agent,0.316,-0.360,-0.760,-0.320,-0.268,0.085,0.000,0.480,-0.080,0.032,-0.088
|
| 11 |
-
Llama-2-70b-chat,CoT,GPT-3.5-turbo-1106,prompt agent,-0.500,0.080,-0.800,0.265,-0.086,0.128,-0.200,0.061,-0.160,0.324,-0.089
|
| 12 |
-
Mistral-7b-Orca,CoT,GPT-3.5-turbo-1106,prompt agent,-0.077,-0.120,-0.320,-0.560,0.133,0.078,0.000,0.360,-0.680,0.055,-0.113
|
| 13 |
-
Codellama-34b-instruct,SC-CoT,GPT-3.5-turbo-1106,prompt agent,0.122,-0.600,-0.560,-0.280,-0.348,0.095,0.000,0.160,0.120,0.008,-0.128
|
| 14 |
-
Mistral-7b-Orca,SC-CoT,GPT-3.5-turbo-1106,prompt agent,-0.200,-0.080,-0.400,-0.640,0.082,0.364,-0.040,0.440,-0.840,0.013,-0.130
|
| 15 |
-
Codellama-34b-instruct,ToT,GPT-3.5-turbo-1106,prompt agent,-0.021,-0.160,-0.600,-0.520,-0.304,0.098,0.000,-0.040,-0.160,0.237,-0.147
|
| 16 |
-
Llama-2-70b-chat,Prompt,GPT-3.5-turbo-1106,prompt agent,-0.366,-1.000,-0.440,-0.160,-0.075,-0.033,-0.040,0.800,-0.020,-0.712,-0.205
|
| 17 |
-
Mistral-7b-Orca,ToT,GPT-3.5-turbo-1106,prompt agent,-0.179,-0.800,-0.320,-0.440,-0.047,0.299,-0.200,-0.080,-0.840,0.162,-0.245
|
| 18 |
-
Mistral-7b-Orca,Prompt,GPT-3.5-turbo-1106,prompt agent,-0.429,-0.840,-0.680,-0.680,-0.069,-0.114,-0.040,-0.080,0.000,-0.182,-0.311
|
| 19 |
-
GPT-4,Prompt,GPT-4,prompt agent,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
|
| 20 |
-
Codellama-34b-instruct,Prompt,GPT-4,prompt agent,-0.064,0.720,-0.600,-0.640,-0.148,0.000,0.080,0.160,0.040,0.342,-0.011
|
| 21 |
-
Codellama-34b-instruct,CoT,GPT-4,prompt agent,0.022,0.560,-1.000,-0.800,0.449,-0.078,0.080,0.200,-0.080,0.224,-0.042
|
| 22 |
-
Llama-2-70b-chat,Prompt,GPT-4,prompt agent,-0.938,0.960,-0.920,-0.720,-0.250,0.000,-0.040,0.360,0.200,0.333,-0.101
|
| 23 |
-
Llama-2-70b-chat,CoT,GPT-4,prompt agent,-0.286,0.200,-0.880,-0.917,-0.417,0.201,0.000,-0.026,-0.360,0.173,-0.231
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assets/uc_result.csv
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Method,S-UA,S-IRA S-CRA,O-UA,O-IRA,O-CRA,FID,Time (s),Memory (GB),Storage (GB)
|
| 2 |
+
ESD,98.58%,80.97%,93.96%,92.15%,55.78%,44.23%,65.55,6163,17.8,4.3
|
| 3 |
+
FMN,88.48%,56.77%,46.60%,45.64%,90.63%,73.46%,131.37,350,17.9,4.2
|
| 4 |
+
UCE,98.40%,60.22%,47.71%,94.31%,39.35%,34.67%,182.01,434,5.1,1.7
|
| 5 |
+
CA,60.82%,96.01%,92.70%,46.67%,90.11%,81.97%,54.21,734,10.1,4.2
|
| 6 |
+
SalUn,86.26%,90.39%,95.08%,86.91%,96.35%,99.59%,61.05,667,30.8,4.0
|