Spaces:
Running
Running
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import math | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| import torch | |
| import torch.nn.functional as F | |
| import numpy as np | |
| from fairseq import metrics, utils | |
| from fairseq.criterions import FairseqCriterion, register_criterion | |
| from fairseq.dataclass import FairseqDataclass | |
| from omegaconf import II | |
| class AjustLabelSmoothedCrossEntropyCriterionConfig(FairseqDataclass): | |
| label_smoothing: float = field( | |
| default=0.0, | |
| metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"}, | |
| ) | |
| report_accuracy: bool = field( | |
| default=False, | |
| metadata={"help": "report accuracy metric"}, | |
| ) | |
| ignore_prefix_size: int = field( | |
| default=0, | |
| metadata={"help": "Ignore first N tokens"}, | |
| ) | |
| ignore_eos: bool = field( | |
| default=False, | |
| metadata={"help": "Ignore eos token"}, | |
| ) | |
| sentence_avg: bool = II("optimization.sentence_avg") | |
| drop_worst_ratio: float = field( | |
| default=0.0, | |
| metadata={"help": "ratio for discarding bad samples"}, | |
| ) | |
| drop_worst_after: int = field( | |
| default=0, | |
| metadata={"help": "steps for discarding bad samples"}, | |
| ) | |
| use_rdrop: bool = field( | |
| default=False, metadata={"help": "use R-Drop"} | |
| ) | |
| reg_alpha: float = field( | |
| default=1.0, metadata={"help": "weight for R-Drop"} | |
| ) | |
| sample_patch_num: int = field( | |
| default=196, metadata={"help": "sample patchs for v1"} | |
| ) | |
| constraint_range: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "constraint range"} | |
| ) | |
| def construct_rdrop_sample(x): | |
| if isinstance(x, dict): | |
| for key in x: | |
| x[key] = construct_rdrop_sample(x[key]) | |
| return x | |
| elif isinstance(x, torch.Tensor): | |
| return x.repeat(2, *([1] * (x.dim()-1))) | |
| elif isinstance(x, int): | |
| return x * 2 | |
| elif isinstance(x, np.ndarray): | |
| return x.repeat(2) | |
| else: | |
| raise NotImplementedError | |
| def kl_loss(p, q): | |
| p_loss = F.kl_div(p, torch.exp(q), reduction='sum') | |
| q_loss = F.kl_div(q, torch.exp(p), reduction='sum') | |
| loss = (p_loss + q_loss) / 2 | |
| return loss | |
| def label_smoothed_nll_loss( | |
| lprobs, target, epsilon, update_num, reduce=True, | |
| drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0, | |
| constraint_masks=None, constraint_start=None, constraint_end=None | |
| ): | |
| if target.dim() == lprobs.dim() - 1: | |
| target = target.unsqueeze(-1) | |
| nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1) | |
| if constraint_masks is not None: | |
| smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1) | |
| eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6) | |
| elif constraint_start is not None and constraint_end is not None: | |
| constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end)) | |
| smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1) | |
| eps_i = epsilon / (len(constraint_range) - 1 + 1e-6) | |
| else: | |
| smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1) | |
| eps_i = epsilon / (lprobs.size(-1) - 1) | |
| loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss | |
| if drop_worst_ratio > 0 and update_num > drop_worst_after: | |
| if use_rdrop: | |
| true_batch_size = loss.size(0) // 2 | |
| _, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False) | |
| loss = torch.cat([loss[indices], loss[indices+true_batch_size]]) | |
| nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]]) | |
| lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]]) | |
| else: | |
| loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False) | |
| nll_loss = nll_loss[indices] | |
| lprobs = lprobs[indices] | |
| ntokens = loss.numel() | |
| nll_loss = nll_loss.sum() | |
| loss = loss.sum() | |
| if use_rdrop: | |
| true_batch_size = lprobs.size(0) // 2 | |
| p = lprobs[:true_batch_size] | |
| q = lprobs[true_batch_size:] | |
| if constraint_start is not None and constraint_end is not None: | |
| constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end)) | |
| p = p[:, constraint_range] | |
| q = q[:, constraint_range] | |
| loss += kl_loss(p, q) * reg_alpha | |
| return loss, nll_loss, ntokens | |
| class AjustLabelSmoothedCrossEntropyCriterion(FairseqCriterion): | |
| def __init__( | |
| self, | |
| task, | |
| sentence_avg, | |
| label_smoothing, | |
| ignore_prefix_size=0, | |
| ignore_eos=False, | |
| report_accuracy=False, | |
| drop_worst_ratio=0, | |
| drop_worst_after=0, | |
| use_rdrop=False, | |
| reg_alpha=1.0, | |
| sample_patch_num=196, | |
| constraint_range=None | |
| ): | |
| super().__init__(task) | |
| self.sentence_avg = sentence_avg | |
| self.eps = label_smoothing | |
| self.ignore_prefix_size = ignore_prefix_size | |
| self.ignore_eos = ignore_eos | |
| self.report_accuracy = report_accuracy | |
| self.drop_worst_ratio = drop_worst_ratio | |
| self.drop_worst_after = drop_worst_after | |
| self.use_rdrop = use_rdrop | |
| self.reg_alpha = reg_alpha | |
| self.sample_patch_num = sample_patch_num | |
| self.constraint_start = None | |
| self.constraint_end = None | |
| if constraint_range is not None: | |
| constraint_start, constraint_end = constraint_range.split(',') | |
| self.constraint_start = int(constraint_start) | |
| self.constraint_end = int(constraint_end) | |
| def forward(self, model, sample, update_num=0, reduce=True): | |
| """Compute the loss for the given sample. | |
| Returns a tuple with three elements: | |
| 1) the loss | |
| 2) the sample size, which is used as the denominator for the gradient | |
| 3) logging outputs to display while training | |
| """ | |
| if isinstance(sample, list): | |
| if self.sample_patch_num > 0: | |
| sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num | |
| loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce) | |
| loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce) | |
| loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2 | |
| sample_size = 1 | |
| logging_output = { | |
| "loss": loss.data, | |
| "loss_v1": loss_v1.data, | |
| "loss_v2": loss_v2.data, | |
| "nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2, | |
| "ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"], | |
| "nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"], | |
| "sample_size": 1, | |
| "sample_size_v1": sample_size_v1, | |
| "sample_size_v2": sample_size_v2, | |
| } | |
| return loss, sample_size, logging_output | |
| if self.use_rdrop: | |
| construct_rdrop_sample(sample) | |
| net_output = model(**sample["net_input"]) | |
| loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce) | |
| sample_size = ( | |
| sample["target"].size(0) if self.sentence_avg else ntokens | |
| ) | |
| logging_output = { | |
| "loss": loss.data, | |
| "nll_loss": nll_loss.data, | |
| "ntokens": sample["ntokens"], | |
| "nsentences": sample["nsentences"], | |
| "sample_size": sample_size, | |
| } | |
| if self.report_accuracy: | |
| n_correct, total = self.compute_accuracy(model, net_output, sample) | |
| logging_output["n_correct"] = utils.item(n_correct.data) | |
| logging_output["total"] = utils.item(total.data) | |
| return loss, sample_size, logging_output | |
| def get_lprobs_and_target(self, model, net_output, sample): | |
| conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1 | |
| constraint_masks = None | |
| if "constraint_masks" in sample and sample["constraint_masks"] is not None: | |
| constraint_masks = sample["constraint_masks"] | |
| net_output[0].masked_fill_(~constraint_masks, -math.inf) | |
| if self.constraint_start is not None and self.constraint_end is not None: | |
| net_output[0][:, :, 4:self.constraint_start] = -math.inf | |
| net_output[0][:, :, self.constraint_end:] = -math.inf | |
| lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf | |
| target = model.get_targets(sample, net_output) | |
| if self.ignore_prefix_size > 0: | |
| lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous() | |
| target = target[:, self.ignore_prefix_size :].contiguous() | |
| if constraint_masks is not None: | |
| constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous() | |
| if self.ignore_eos: | |
| bsz, seq_len, embed_dim = lprobs.size() | |
| eos_indices = target.eq(self.task.tgt_dict.eos()) | |
| lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim) | |
| target = target[~eos_indices].reshape(bsz, seq_len-1) | |
| if constraint_masks is not None: | |
| constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim) | |
| if constraint_masks is not None: | |
| constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1)) | |
| return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks | |
| def compute_loss(self, model, net_output, sample, update_num, reduce=True): | |
| lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample) | |
| if constraint_masks is not None: | |
| constraint_masks = constraint_masks[target != self.padding_idx] | |
| lprobs = lprobs[target != self.padding_idx] | |
| target = target[target != self.padding_idx] | |
| loss, nll_loss, ntokens = label_smoothed_nll_loss( | |
| lprobs, | |
| target, | |
| self.eps, | |
| update_num, | |
| reduce=reduce, | |
| drop_worst_ratio=self.drop_worst_ratio, | |
| drop_worst_after=self.drop_worst_after, | |
| use_rdrop=self.use_rdrop, | |
| reg_alpha=self.reg_alpha, | |
| constraint_masks=constraint_masks, | |
| constraint_start=self.constraint_start, | |
| constraint_end=self.constraint_end | |
| ) | |
| return loss, nll_loss, ntokens | |
| def compute_accuracy(self, model, net_output, sample): | |
| lprobs, target = self.get_lprobs_and_target(model, net_output, sample) | |
| mask = target.ne(self.padding_idx) | |
| n_correct = torch.sum( | |
| lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask)) | |
| ) | |
| total = torch.sum(mask) | |
| return n_correct, total | |
| def reduce_metrics(cls, logging_outputs) -> None: | |
| """Aggregate logging outputs from data parallel training.""" | |
| loss_sum = sum(log.get("loss", 0) for log in logging_outputs) | |
| loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs) | |
| loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs) | |
| nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs) | |
| ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) | |
| nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) | |
| sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) | |
| sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs) | |
| sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs) | |
| metrics.log_scalar( | |
| "loss", loss_sum / sample_size, sample_size, round=3 | |
| ) | |
| metrics.log_scalar( | |
| "loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3 | |
| ) | |
| metrics.log_scalar( | |
| "loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3 | |
| ) | |
| metrics.log_scalar( | |
| "nll_loss", nll_loss_sum / sample_size, ntokens, round=3 | |
| ) | |
| metrics.log_derived( | |
| "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) | |
| ) | |
| metrics.log_scalar( | |
| "ntokens", ntokens, 1, round=3 | |
| ) | |
| metrics.log_scalar( | |
| "nsentences", nsentences, 1, round=3 | |
| ) | |
| metrics.log_scalar( | |
| "sample_size", sample_size, 1, round=3 | |
| ) | |
| metrics.log_scalar( | |
| "sample_size_v1", sample_size_v1, 1, round=3 | |
| ) | |
| metrics.log_scalar( | |
| "sample_size_v2", sample_size_v2, 1, round=3 | |
| ) | |
| total = utils.item(sum(log.get("total", 0) for log in logging_outputs)) | |
| if total > 0: | |
| metrics.log_scalar("total", total) | |
| n_correct = utils.item( | |
| sum(log.get("n_correct", 0) for log in logging_outputs) | |
| ) | |
| metrics.log_scalar("n_correct", n_correct) | |
| metrics.log_derived( | |
| "accuracy", | |
| lambda meters: round( | |
| meters["n_correct"].sum * 100.0 / meters["total"].sum, 3 | |
| ) | |
| if meters["total"].sum > 0 | |
| else float("nan"), | |
| ) | |
| def logging_outputs_can_be_summed() -> bool: | |
| """ | |
| Whether the logging outputs returned by `forward` can be summed | |
| across workers prior to calling `reduce_metrics`. Setting this | |
| to True will improves distributed training speed. | |
| """ | |
| return True | |