Spaces:
Build error
Build error
Commit
·
109623e
1
Parent(s):
5d18ec4
improve
Browse files
app.py
CHANGED
|
@@ -9,7 +9,9 @@ import streamlit as st
|
|
| 9 |
from datetime import datetime, timedelta
|
| 10 |
import matplotlib.pyplot as plt
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
"open-source-metrics/transformers-dependents",
|
| 14 |
"open-source-metrics/diffusers-dependents",
|
| 15 |
"open-source-metrics/pytorch-image-models-dependents",
|
|
@@ -21,130 +23,143 @@ libraries = [
|
|
| 21 |
"open-source-metrics/optimum-dependents",
|
| 22 |
"open-source-metrics/hub-docs-dependents",
|
| 23 |
"open-source-metrics/huggingface_hub-dependents",
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
option = st.selectbox(
|
| 27 |
-
'Choose library',
|
| 28 |
-
libraries
|
| 29 |
-
)
|
| 30 |
-
|
| 31 |
-
cached_folder = snapshot_download(option, repo_type="dataset")
|
| 32 |
-
|
| 33 |
-
num_dependents = defaultdict(int)
|
| 34 |
-
num_stars_all_dependents = defaultdict(int)
|
| 35 |
|
| 36 |
-
|
| 37 |
-
for subdir, dirs, files in os.walk(directory):
|
| 38 |
-
for file in files:
|
| 39 |
-
if file.endswith('.json'):
|
| 40 |
-
file_path = os.path.join(subdir, file)
|
| 41 |
-
date = "_".join(file_path.split(".")[-2].split("/")[-3:])
|
| 42 |
-
with open(file_path, 'r') as f:
|
| 43 |
-
data = json.load(f)
|
| 44 |
-
# Process the JSON data as needed
|
| 45 |
-
if "name" in data and "stars" in data:
|
| 46 |
-
num_dependents[date] = len(data["name"])
|
| 47 |
-
num_stars_all_dependents[date] = sum(data["stars"])
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
# Convert date strings to datetime objects and sort
|
| 54 |
-
sorted_tuples = sorted(d.items(), key=lambda x: datetime.strptime(x[0], '%Y_%m_%d'))
|
| 55 |
-
# Convert back to dictionary if needed
|
| 56 |
-
return defaultdict(int, sorted_tuples)
|
| 57 |
|
| 58 |
-
def
|
| 59 |
-
|
| 60 |
-
sorted_data = sorted(data.items(), key=lambda x: datetime.strptime(x[0], '%Y_%m_%d'))
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
# Convert string dates to datetime objects
|
| 78 |
-
temp_data = {datetime.strptime(date, '%Y_%m_%d'): value for date, value in data.items()}
|
| 79 |
|
| 80 |
-
#
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
# Generate a date range
|
| 84 |
-
current_date = min_date
|
| 85 |
-
while current_date <= max_date:
|
| 86 |
-
# If the current date is missing
|
| 87 |
-
if current_date not in temp_data:
|
| 88 |
-
# Find previous and next dates that are present
|
| 89 |
-
prev_date = current_date - timedelta(days=1)
|
| 90 |
-
next_date = current_date + timedelta(days=1)
|
| 91 |
-
while prev_date not in temp_data:
|
| 92 |
-
prev_date -= timedelta(days=1)
|
| 93 |
-
while next_date not in temp_data:
|
| 94 |
-
next_date += timedelta(days=1)
|
| 95 |
-
|
| 96 |
-
# Linear interpolation
|
| 97 |
-
prev_value = temp_data[prev_date]
|
| 98 |
-
next_value = temp_data[next_date]
|
| 99 |
-
interpolated_value = prev_value + ((next_value - prev_value) * ((current_date - prev_date) / (next_date - prev_date)))
|
| 100 |
-
temp_data[current_date] = interpolated_value
|
| 101 |
-
|
| 102 |
-
current_date += timedelta(days=1)
|
| 103 |
-
|
| 104 |
-
# Convert datetime objects back to string format
|
| 105 |
-
interpolated_data = defaultdict(int, {date.strftime('%Y_%m_%d'): int(value) for date, value in temp_data.items()})
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
-
num_dependents_df['Date'] = pd.to_datetime(num_dependents_df['Date'], format='%Y_%m_%d')
|
| 122 |
-
num_cum_stars_df['Date'] = pd.to_datetime(num_cum_stars_df['Date'], format='%Y_%m_%d')
|
| 123 |
|
| 124 |
-
|
| 125 |
-
num_dependents_df = num_dependents_df.resample('D').asfreq()
|
| 126 |
-
num_dependents_df['Value'] = num_dependents_df['Value'].interpolate()
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
num_cum_stars_df['Value'] = num_cum_stars_df['Value'].interpolate()
|
| 131 |
|
| 132 |
-
|
|
|
|
| 133 |
|
| 134 |
-
# Plotting
|
| 135 |
-
plt.figure(figsize=(10, 6))
|
| 136 |
-
plt.gca().yaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
|
| 137 |
-
plt.plot(num_dependents_df.index, num_dependents_df['Value'], marker='o')
|
| 138 |
plt.xlabel('Date')
|
| 139 |
-
plt.ylabel('
|
|
|
|
| 140 |
plt.title('Dependencies History')
|
| 141 |
st.pyplot(plt)
|
| 142 |
|
| 143 |
# Display in Streamlit
|
| 144 |
-
plt.figure(figsize=(
|
| 145 |
plt.gca().yaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
| 147 |
plt.xlabel('Date')
|
| 148 |
-
plt.ylabel('
|
|
|
|
| 149 |
plt.title('Dependents Stars History')
|
| 150 |
st.pyplot(plt)
|
|
|
|
| 9 |
from datetime import datetime, timedelta
|
| 10 |
import matplotlib.pyplot as plt
|
| 11 |
|
| 12 |
+
plt.rcParams.update({'font.size': 40})
|
| 13 |
+
|
| 14 |
+
libraries = {
|
| 15 |
"open-source-metrics/transformers-dependents",
|
| 16 |
"open-source-metrics/diffusers-dependents",
|
| 17 |
"open-source-metrics/pytorch-image-models-dependents",
|
|
|
|
| 23 |
"open-source-metrics/optimum-dependents",
|
| 24 |
"open-source-metrics/hub-docs-dependents",
|
| 25 |
"open-source-metrics/huggingface_hub-dependents",
|
| 26 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
MAP = {k.split("/")[-1].split("-")[0]: k for k in libraries}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
selected_libraries = st.multiselect(
|
| 31 |
+
'Choose libraries',
|
| 32 |
+
list(MAP.keys())
|
| 33 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
def get_frames(option):
|
| 36 |
+
cached_folder = snapshot_download(option, repo_type="dataset")
|
|
|
|
| 37 |
|
| 38 |
+
num_dependents = defaultdict(int)
|
| 39 |
+
num_stars_all_dependents = defaultdict(int)
|
| 40 |
|
| 41 |
+
def load_json_files(directory):
|
| 42 |
+
for subdir, dirs, files in os.walk(directory):
|
| 43 |
+
for file in files:
|
| 44 |
+
if file.endswith('.json'):
|
| 45 |
+
file_path = os.path.join(subdir, file)
|
| 46 |
+
date = "_".join(file_path.split(".")[-2].split("/")[-3:])
|
| 47 |
+
with open(file_path, 'r') as f:
|
| 48 |
+
data = json.load(f)
|
| 49 |
+
# Process the JSON data as needed
|
| 50 |
+
if "name" in data and "stars" in data:
|
| 51 |
+
num_dependents[date] = len(data["name"])
|
| 52 |
+
num_stars_all_dependents[date] = sum(data["stars"])
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
# Replace 'your_directory_path' with the path to the directory containing your '11' and '12' folders
|
| 55 |
+
load_json_files(cached_folder)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
def sort_dict_by_date(d):
|
| 58 |
+
# Convert date strings to datetime objects and sort
|
| 59 |
+
sorted_tuples = sorted(d.items(), key=lambda x: datetime.strptime(x[0], '%Y_%m_%d'))
|
| 60 |
+
# Convert back to dictionary if needed
|
| 61 |
+
return defaultdict(int, sorted_tuples)
|
| 62 |
+
|
| 63 |
+
def remove_incorrect_entries(data):
|
| 64 |
+
# Convert string dates to datetime objects for easier comparison
|
| 65 |
+
sorted_data = sorted(data.items(), key=lambda x: datetime.strptime(x[0], '%Y_%m_%d'))
|
| 66 |
+
|
| 67 |
+
# Initialize a new dictionary to store the corrected data
|
| 68 |
+
corrected_data = defaultdict(int)
|
| 69 |
+
|
| 70 |
+
# Variable to keep track of the number of dependents on the previous date
|
| 71 |
+
previous_dependents = None
|
| 72 |
+
|
| 73 |
+
for date, dependents in sorted_data:
|
| 74 |
+
# If the current number of dependents is not less than the previous, add it to the corrected data
|
| 75 |
+
if previous_dependents is None or dependents >= previous_dependents:
|
| 76 |
+
corrected_data[date] = dependents
|
| 77 |
+
previous_dependents = dependents
|
| 78 |
+
|
| 79 |
+
return corrected_data
|
| 80 |
+
|
| 81 |
+
def interpolate_missing_dates(data):
|
| 82 |
+
# Convert string dates to datetime objects
|
| 83 |
+
temp_data = {datetime.strptime(date, '%Y_%m_%d'): value for date, value in data.items()}
|
| 84 |
+
|
| 85 |
+
# Find the min and max dates to establish the range
|
| 86 |
+
min_date, max_date = min(temp_data.keys()), max(temp_data.keys())
|
| 87 |
+
|
| 88 |
+
# Generate a date range
|
| 89 |
+
current_date = min_date
|
| 90 |
+
while current_date <= max_date:
|
| 91 |
+
# If the current date is missing
|
| 92 |
+
if current_date not in temp_data:
|
| 93 |
+
# Find previous and next dates that are present
|
| 94 |
+
prev_date = current_date - timedelta(days=1)
|
| 95 |
+
next_date = current_date + timedelta(days=1)
|
| 96 |
+
while prev_date not in temp_data:
|
| 97 |
+
prev_date -= timedelta(days=1)
|
| 98 |
+
while next_date not in temp_data:
|
| 99 |
+
next_date += timedelta(days=1)
|
| 100 |
+
|
| 101 |
+
# Linear interpolation
|
| 102 |
+
prev_value = temp_data[prev_date]
|
| 103 |
+
next_value = temp_data[next_date]
|
| 104 |
+
interpolated_value = prev_value + ((next_value - prev_value) * ((current_date - prev_date) / (next_date - prev_date)))
|
| 105 |
+
temp_data[current_date] = interpolated_value
|
| 106 |
+
|
| 107 |
+
current_date += timedelta(days=1)
|
| 108 |
+
|
| 109 |
+
# Convert datetime objects back to string format
|
| 110 |
+
interpolated_data = defaultdict(int, {date.strftime('%Y_%m_%d'): int(value) for date, value in temp_data.items()})
|
| 111 |
+
|
| 112 |
+
return interpolated_data
|
| 113 |
+
|
| 114 |
+
num_dependents = remove_incorrect_entries(num_dependents)
|
| 115 |
+
num_stars_all_dependents = remove_incorrect_entries(num_stars_all_dependents)
|
| 116 |
+
|
| 117 |
+
num_dependents = interpolate_missing_dates(num_dependents)
|
| 118 |
+
num_stars_all_dependents = interpolate_missing_dates(num_stars_all_dependents)
|
| 119 |
+
|
| 120 |
+
num_dependents = sort_dict_by_date(num_dependents)
|
| 121 |
+
num_stars_all_dependents = sort_dict_by_date(num_stars_all_dependents)
|
| 122 |
+
|
| 123 |
+
num_dependents_df = pd.DataFrame(list(num_dependents.items()), columns=['Date', 'Value'])
|
| 124 |
+
num_cum_stars_df = pd.DataFrame(list(num_stars_all_dependents.items()), columns=['Date', 'Value'])
|
| 125 |
+
|
| 126 |
+
num_dependents_df['Date'] = pd.to_datetime(num_dependents_df['Date'], format='%Y_%m_%d')
|
| 127 |
+
num_cum_stars_df['Date'] = pd.to_datetime(num_cum_stars_df['Date'], format='%Y_%m_%d')
|
| 128 |
+
|
| 129 |
+
num_dependents_df.set_index('Date', inplace=True)
|
| 130 |
+
num_dependents_df = num_dependents_df.resample('D').asfreq()
|
| 131 |
+
num_dependents_df['Value'] = num_dependents_df['Value'].interpolate()
|
| 132 |
+
|
| 133 |
+
num_cum_stars_df.set_index('Date', inplace=True)
|
| 134 |
+
num_cum_stars_df = num_cum_stars_df.resample('D').asfreq()
|
| 135 |
+
num_cum_stars_df['Value'] = num_cum_stars_df['Value'].interpolate()
|
| 136 |
+
|
| 137 |
+
return num_dependents_df, num_cum_stars_df
|
| 138 |
|
|
|
|
|
|
|
| 139 |
|
| 140 |
+
lib_frames = {l: get_frames(MAP[l]) for l in selected_libraries}
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
plt.figure(figsize=(40, 24))
|
| 143 |
+
plt.gca().yaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
|
|
|
|
| 144 |
|
| 145 |
+
for l, (df_dep, _) in lib_frames.items():
|
| 146 |
+
plt.plot(df_dep.index, df_dep['Value'], label=l, marker='o')
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
plt.xlabel('Date')
|
| 149 |
+
plt.ylabel('# Dependencies')
|
| 150 |
+
plt.legend()
|
| 151 |
plt.title('Dependencies History')
|
| 152 |
st.pyplot(plt)
|
| 153 |
|
| 154 |
# Display in Streamlit
|
| 155 |
+
plt.figure(figsize=(40, 24))
|
| 156 |
plt.gca().yaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
|
| 157 |
+
|
| 158 |
+
for l, (_, df_stars) in lib_frames.items():
|
| 159 |
+
plt.plot(df_stars.index, df_stars['Value'], label=l, marker='o')
|
| 160 |
+
|
| 161 |
plt.xlabel('Date')
|
| 162 |
+
plt.ylabel('SUM stars of dependencies')
|
| 163 |
+
plt.legend()
|
| 164 |
plt.title('Dependents Stars History')
|
| 165 |
st.pyplot(plt)
|